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Abstract—All known recursive filters based on the geodesic
distance affinity are realized by two 1D recursions applied in two
orthogonal directions of the image plane. The 2D extension of the
filter is not valid and has theoretically drawbacks which lead to
known artifacts. In this paper a maximum influence propagation
method is proposed to approximate the 2D extension for the
geodesic distance based recursive filter. The method allows to
partially overcome the drawbacks of the 1D recursion approach.
We show that our improved recursion better approximates the
true geodesic distance filter, and the application of this improved
filter for image denoising outperforms the existing recursive
implementation of the geodesic distance. As an application we
consider a geodesic distance based filter for image denoising.
Experimental evaluation of our denoising method demonstrate
comparable and for several test images better results, than state-
of-the-art approaches, while our algorithm is considerably faster
with computational complexity O(8P).

Index Terms—Geodesic distance filter, color image filtering,
image enhancement.

I. INTRODUCTION

The geodesic distance metric is popular in image processing
and computer vision applications including segmentation [7],
[26], object proposal computation [15], stereo estimation [17]
and image filtering [12]. Originally, a geodesic is the shortest
route between two points on the Earth surface. The geodesic
distance is a generalization of the straight line distance in the
Euclidean space to the distance measure in a curved space.
In the case of images, the geodesic distance is defined as
the shortest path on the surface between two points. Here
the surface is formed by the image value function defined
on the 2D spatial domain. In several applications the geodesic
distance needs to be computed between a limited set of seed
points for which very fast algorithms exist [7]. However,
for other applications such as image filtering and energy
minimization the geodesic distance needs to be computed
between all possible pixel pairs in the image and the com-
putational complexity of this kind of the filter is demanding.
In this article we consider applications which require geodesic
distance computation between all pairs of points in the image.

Known methods which address this problem approximate
the geodesic distance recursively by applying the 1D recursion
twice, firstly along the vertical coordinate and then along
horizontal coordinate (or vice versa) of the image plane
(abbreviated with 1D recursion in the remainder of the paper
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or with XY and YX if the order of the consecutive recursions
is known). One of the first attempts to apply the filter with
the geodesic distance based kernel was proposed in [31], and
later in [8]. A theoretical basis for edge-preserving filtering
with geodesic distance has been proposed in [12] and fur-
ther extended in [29]. Note that the geodesic distance based
filters belong to the more wide class of the edge-preserving
smoothing filters [4], [24], [25] and have received consider-
able attention in image processing, computer graphics, and
computer vision. The filter has been applied to a wide variety
of applications such as edit propagation [2], denoising [5],
stereo matching [17], [19], and optical flow [28], [18], video
abstraction and demosaicing [23], [27].

However the 1D recursion has several drawbacks. The con-
secutive application of the filter along X and Y produces stripe-
like artifacts [12], which can be suppressed only by iterative
application with an unpredictable number of iterations. The
second drawback of the 1D recursion is that filter is not
rotation invariant. In Section 2 we explain these artifacts in
more details.

The proposed maximum influence propagation algorithm
approximates the true geodesic distance (our approach is ab-
breviated with 2D). The idea is to choose a locally optimal path
between two neighbor directions by maximizing the integral
influence. Note that for the filters that are based on geodesic
distance the approximation of the weights (which values are
exponentially inverse to the corresponding geodesic distances)
of the local neighborhood pixels is of more importance than
the actual distances itself. And these influence weights form
support regions around filtered pixels. This is why we ap-
proximated the pixel-wise integral influence instead of the
true geodesic distances. We will evaluate the geodesic distance
approximation for the task of image denoising. We show that
results of this filter can be greatly improved by pre-filtering the
image from which the affinity space function is computed. Our
denoising algorithm considerably outperforms state-of-the-art
method for several piecewise constant like images (House
and Cameraman) and shows comparable results for other test
images, while being considerably faster with computational
complexity O(8P).

This paper is organized as follows in Section II we propose
our new approach to geodesic distance computation for the
application of image filtering. In Section III we describe our
denoising algorithm. In Section IV we present the experimen-
tal results, and we conclude in Section V.
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II. FAST GEODESIC DISTANCE COMPUTATION FOR IMAGE
FILTERING

We first address geodesic distance computation within the
context of image filtering, where it has been principally used
for fast bilateral filter computation. The classic bilateral kernel
is a function of the Euclidean distance in the joint color and
spatial coordinates multidimensional space. The computational
complexity of the brute-force implementation for this kind
of kernels is highly demanding. Several fast algorithms were
proposed in recent years [1], [13], [20], [21], [22], where
the approximation achieves high quality. The computational
complexity for the fast realization usually depends on filter
parameters. Thus, the geodesic distance based recursive filter
is a real alternative to the bilateral filter due to its natural
ability to be calculated recursively and the constant compu-
tational complexity, which does not depend on any intrinsic
parameters. Actually, the work of Yang [29] on recursive
bilateral filtering proposed to use the geodesic distance for
its computation.

A. Geodesic distance approximation

We use p, q, k, l ∈ V to identify vertices, and set ε =
(k, l) ∈ E as edges of an image graph G = {V,E}.
The geodesic distance based filter is usually chosen in the
following form, which makes the filter recursive

Fq = 1
Wq

∑
p∈V

e−adp,qfp,

Wq =
∑
p∈V

e−adp,q ,
(1)

where Fq and fp are the output and the input of the filter re-
spectively. A weight e−adp,q in (1) defines an affinity between
any two image pixels (p, q) (further replaced by a shortcut
wp,q = e−adp,q ) and Wq is the normalization factor. The
variable dp,q in (1) is the geodesic distance between image
pixels (p, q) which for an image Ip can be defined on the
discrete grid graph as

dp,q = min
Pp,q

∑
ε∈Pp,q

uε,

uε=(k,l) = ‖Ik − Il‖+ δ,
(2)

where Pp,q is any path between two graph vertices (p, q) and
δ is the spacial term. The norm in (2) is the Euclidean distance
in RGB space. If one considers a grayscale image the norm
reduces to the simple absolute value. Input function fp in (1)
can be the same as an image Ip, but in many applications the
image Ip only defines the affinity space of the filter.

Note, the filter intrinsic parameters a and δ in (2) approx-
imately correspond to the parameters of the classic bilateral
filter with the Gaussian kernel as follows

a =
2

σ2
r

, δ =
σ2
r

σ2
s

, (3)

where σ2
r and σ2

s are the range and the spacial variance
respectively.

A path Pp,q ideally should minimize the sum in (2) to be the
geodesic distance. However the recursive algorithms proposed
in [12], [29] realize only two consecutive 1D recursion: first
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Fig. 1. Illustration of (left) an incremental path, (right) difference between
1D and 2D geodesic distances and its corresponding paths. The graph vertex
ρ1 or alternative ρ2 is an intermediate node of the path P 1D

p,q , and vertices ρ3,
ρ4 are intermediate nodes for the path P 2D

p,q . In this illustration we assume
that the distance between the intensities Ip and Iρ1 to be∞, then d1Dp,q ≈ ∞.
In contrast the path P 2D

p,q can be chosen in such a way via vertices ρ3 and
ρ4 that d2Dp,q ≈ 0, here we assume that the spacial term δ = 0.

along X direction then along Y (or vice versa). The limitation
of this approximation is illustrated in Fig. 1(right) by the
P 1D
p,q path. In this illustration we assume that the distance

between the intensities Ip and Iρ1
to be ∞ then d1D

p,q ≈ ∞.
The infinity distance means that there is no influence or
connectivity between nodes p and q. As a consequence, filters
based on this estimation of the geodesic distance, have a
smaller support region, and are therefore of lower quality. We
use the term support region to indicate the set of pixels from a
neighborhood with non-negligible influence or weights of the
filter kernel.

Our algorithm aims to improve the geodesic distance es-
timation by approximating the optimal incremental distance,
which is illustrated in Fig. 1(left). The incremental path P incp,q

is characterized by L1 Euclidean distance between initial pixel
p and any next pixel, which belongs to the path. The value
of this L1 distance monotonically increases along the path.
Note that the P incp,q path is more flexible than the fixed path
P 1D
p,q , but still constrained in comparison with an arbitrary path
Pp,q used in the general geodesic distance definition Eq. (2).
In turn the path in Fig. 1(left) can be estimated recursively
by a dynamic programming algorithm only choosing the
minimum between two incoming edges plus the optimal path
ending in the corresponding neighbor pixels ux̄,q + dp,x̄ and
uȳ,q +dp,ȳ of any final pixel q of the path (here two shortcuts
x̄ = {xq − 1, yq} and ȳ = {xq, yq − 1} are used). This
fact inspired us to include the dynamic programming prin-
ciple into our improved geodesic distance computation. The
dynamic programming principle provides the exact solution
when considering two points (one starting and one ending
point). However, it cannot be applied exactly for the recursive
weight calculation between sets of points, which is necessary
for geodesic filtering. Nevertheless, the dynamic programming
principle can be considered a motivation for our approach to
estimating the geodesic distance.
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Fig. 2. Illustration of the general recursive summation tree scheme for the
1D recursion first along Y and then along X and its part of the first quadrant.

q

YX

3

3

W

F

q

2D

1 1 W F

3

3

W

F

1

1

W

F

q

XY

1

1

W

F

1 1  W F

Fig. 3. Illustration of all three possible realization of recursive summation
trees: (left) - the tree corresponds to the scheme in Eq. (11) first along Y
and then along X direction; (right) - s the tree corresponds to the scheme
in Eq. (12) first along X and then along Y direction; (middle) - the tree
corresponds to the proposed 2D scheme Fig. 4.

From (2) one can derive

wp,q=e

−a min
Pinc
q,p

∑
ε∈Pinc

p,q

uε

=max
P inc

p,q

∏
ε∈P inc

p,q

e−auε =max
P inc

p,q

∏
ε∈P inc

p,q

ωε (4)

Eq. (4) states that the distance minimization is equivalent to
maximization of the weight wp,q . The weight wp,q itself is a
measure of a reciprocal influence between two pixels (p, q).
From Fig. 1(right) we can see that d2D

p,q ≈ 0 whereas d1D
p,q ≈ ∞.

Consequently, the affinity weights are w2D
p,q ≈ 1 and w1D

p,q ≈
0. It means that for the 2D path there is a strong influence
between the pixel q and the pixel p and no influence in the
case of the 1D path. The main idea is to maximize the integral
weight factor Wp or to minimize the sum of all distances,
which end at the pixel q.

We will further explain our algorithm on the basis of
recursive calculation trees, which are depicted in Fig. 2 - 4.
To formalize this tree growing process let us map the graph
G into the 2D regular image grid {X,Y }: p = {xp, yp}.
Then the four connected graph edges are ε = (k, l) ⇒ xk =
xk ± 1, yk = yl or xk = xl, yk = yl ± 1. The full calculation
tree of Eq. (1) can be divided into four quadrants (see the
four branches of the calculation tree in Fig. 2) and in these
quadrants four base sums and their integral weights can be

3 1
, ,1 y q y x q xW W   

q qx x
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Fig. 4. Illustration of the proposed recursive summation tree growing process
for the first quadrant.

calculated

F iq =



F 1
q =

∑
yp≤yq

∑
xp≤xq

wp,qfp

F 2
q =

∑
yp≤yq

∑
xp≥xq

wp,qfp

F 3
q =

∑
yp≥yq

∑
xp≤xq

wp,qfp

F 4
q =

∑
yp≥yq

∑
xp≥xq

wp,qfp

(5)

W i
q =



W 1
q =

∑
yp≤yq

∑
xp≤xq

wp,q

W 2
q =

∑
yp≤yq

∑
xp≥xq

wp,q

W 3
q =

∑
yp≥yq

∑
xp≤xq

wp,q

W 4
q =

∑
yp≥yq

∑
xp≥xq

wp,q

(6)

Note, functions F iq and W i
q are the result of summation over

all the pixels p in the corresponding quadrant domain defined
in (5-6). However the weights wp,q in this summation formula
correspond to paths conditioned by one of the three recursive
calculation trees illustrated in Fig. 3. In other words any path
must be along the edge direction (arrows Fig. 3) in the directed
graph trees Fig. 3. So, rather than only considering the vertical
and horizontal recursion we introduce an additional recursion
tree to improve the estimation of the geodesic distance. This
recursion tree differs from the horizontal and vertical recursion
trees because it adapts to the image content. The growing
process will be further explained in the following Subsection.

We also introduce four support sums and their correspond-
ing integral weights, which are important component of our
algorithm. Note, the following sums are the 1D summation
along image rows or columns:

F̄ iq =



F̄ 1
q =

∑
xp≤xq ;yp=yq

wp,qfp

F̄ 2
q =

∑
xp≥xq ;yp=yq

wp,qfp

F̄ 3
q =

∑
xp=xq ;yp≤yq

wp,qfp

F̄ 4
q =

∑
xp=xq ;yp≥yq

wp,qfp

(7)
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W̄ i
q =



W̄ 1
q =

∑
xp≤xq ;yp=yq

wp,q

W̄ 2
q =

∑
xp≥xq ;yp=yq

wp,q

W̄ 3
q =

∑
xp=xq ;yp≤yq

wp,q

W̄ 4
q =

∑
xp=xq ;yp≥yq

wp,q

(8)

Finally, Eq. (1) can be decomposed into the next expression:

Fq = 1
Wq

( ∑
1≤i≤4

F iq −
∑

1≤i≤4

F̄ iq + fq

)
Wq =

∑
1≤i≤4

W i
q −

∑
1≤i≤4

W̄ i
q + 1

(9)

Here Eq. (9) assumes that the sum of four functions F iq counts
each support function F̄ iq twice due to domains overlap. Thus
we need to subtract the sum

∑
1≤i≤4

F̄ iq to be consistent with

Eq. (1).

B. Recursive implementation

All four base sums from (5-6) and support sums from (7-
8) can be calculated recursively. Support sums should be
calculated first according to:

F̄ iq = fq + ωq̄i,qF̄
i
q̄i

W̄ i
q = 1 + ωq̄i,qW̄

i
q̄i

q̄1 = {xq − 1, yq}
q̄2 = {xq + 1, yq}
q̄3 = {xq, yq − 1}
q̄4 = {xq, yq + 1}

(10)

In the same manner the value of F iq and W i
q can be calculated

recursively:

F iq = fq + ωq̄i,qF̄
ī
q̄i + ωqi,qF

i
qi

W i
q = 1 + ωq̄i,qW̄

ī
q̄i + ωqi,qW

i
qi

q1 = q2 = {xq, yq − 1}
q3 = q4 = {xq, yq + 1}
q̄1 = q̄3 = {xq − 1, yq}
q̄2 = q̄4 = {xq + 1, yq}

ī =

{
1|i ∈ {1, 3}
2|i ∈ {2, 4}

(11)

This calculation scheme corresponds to the 1D recursion
in [12], [29] first along X direction and then along Y .
One branch of this particular calculation tree is illustrated
in Fig. 3 (right). And for another order first Y and then X
direction the same values can be alternatively calculated

F iq = fq + ωq̄i,qF̄
ī
q̄i + ωqi,qF

i
qi

W i
q = 1 + ωq̄i,qW̄

ī
q̄i + ωqi,qW

i
qi

q1 = q3 = {xq − 1, yq}
q2 = q4 = {xq + 1, yq}
q̄1 = q̄2 = {xq, yq − 1}
q̄3 = q̄4 = {xq, yq + 1}

ī =

{
3|i ∈ {1, 2}
4|i ∈ {3, 4}

(12)

The first quadrant branch of this particular calculation tree is
illustrated in Fig. 3 (left).

It can be seen, that in each point q there are two alternatives
from which one can calculate F 1

q and W 1
q , namely Eq. (11)

or Eq. (12). Because our strategy is to maximize the integral
influence at the pixel q, first we calculate W 1

q by both Eq. (11)
and Eq. (12) and then fix the choice based on which Eq. (11)
or (12) gives the maximum value of W 1

q . Finally, our algorithm
is growing a branch of a calculation tree, which is depicted
in Fig. 3 (middle) and explained graphically in Fig. 4.

The proposed calculation scheme preserves the true incre-
mental geodesic distance between pixels p and q if the pixel
p is the only signal source (suppose we mask all unit weights
except in the pixel p). We prove this assertion in the Appendix.
Also in the Appendix we prove that the proposed calculation
scheme Fig. 4 maximizes the value of W 1

q relative to the direct
implementation of the algorithm in (11) or (12), which are
given in Fig. 3 ( left and right respectively).

C. Illustration of improved geodesic distance

We perform three model experiments to show the difference
between the proposed 2D and known 1D algorithms. Also, in
this subsection we compare recursive algorithms with the al-
gorithm based on the true geodesic distance calculation. Note,
the true algorithm has demanding computational complexity:
O
(
|V |2

)
, which is excessive for most practical applications.

The first experiment shows the approximation accuracy of
integral weights Wq for different recursive algorithms. Integral
weights form the filter kernel and a low value of Wq mean that
the pixel q is isolated in the geodesic distance affinity space
and the filter kernel in this pixel is restricted to the pixel itself.
Thus the false restriction due to wrong weights calculation
leads to incorrect filter performance. In the appendix we prove
that

WGT
q ≤W 2D

q ≤ max
(
WXY
q ,WY X

q

)
, (13)

where WGT
q is the weight obtained by the true algorithm,

W 2D
q is the weight calculated by the proposed method and

WXY
q ,WY X

q are resultant weights of two possible realization
of the 1D algorithm.

To illustrate the impact of Eq (13) we show the approx-
imation accuracy based on the weights calculation for a test
image. We use the Lena color test image and calculate weights
with kernel parameters: σr = σs = 20. The result is illustrated
in Fig. 5. Here the weights max

(
WXY
q ,WY X

q

)
(Fig. 5 (c))

corresponds to the kernel of the algorithm proposed in [29].
The idea of this technique is to calculated both recursions
WXY
q and WY X

q , then in each pixel q choose the maximal
value of the weights and the corresponding functions from
pair: FXYq and FY Xq . We can see that this simple weight
composition also suffers from stripe structure as the initial 1D
recursion (Fig. 5 (d)).

We also compare the results quantitatively on the base of
PSNR criterion. For our algorithm approximation accuracy of
W 2D
q to the ground truth WGT

q is 29.91 dB. For the 1D recur-
sion WXY

q this approximation accuracy is 22.76 dB. And for
the more accurate composite recursion max

(
WXY
q ,WY X

q

)
approximation error is 24.46 dB, but it is still a considerably
less accurate approximation.
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The second experiment shows the filter response to the
delta function signal in a homogeneous noisy image, and
is illustrated in Fig. 6. In Fig. 6 (a) and (b) the 1D filter
responses after one and four iterations respectively are shown.
In Fig. 6 (c) and (d) are shown the 2D filter responses
after one and two iterations respectively. Note, computational
complexity of the 2D algorithm is twice as much as for the
1D algorithm. Thus the four iterations of 1D is equivalent to
two iterations of the 2D filter. This experiment confirms the
assumption that our algorithm is a better approximation of the
2D geodesic distance in the color space and its response is
more robust to rotation. The experiment also confirms that the
1D algorithm is not rotation invariant.

The third experiment shows the filter response to the delta
function signal in a narrow region of the test image and the
result is illustrated in Fig. 7. In Fig. 7 (a) and (b) are shown
the 1D filter responses after the first iteration and after four
iterations respectively. In Fig. 7 (c) and (d) are shown the
2D filter responses after first iteration and after two iterations
respectively. One can see that the region where the impact of
the response is non zero is considerably greater in the case
of the 2D realization of the filter than in the case of the 1D
algorithm. Such an increasing of the kernel support region
potentially increases accuracy in applications such as noise
preserving filtering and stereo matching.

III. DENOISING WITH GEODESIC DISTANCE BASED FILTER

As an example application of the proposed geodesic dis-
tance estimation we propose to look at image denoising. Direct
application of the geodesic distance based filter (where the
filtered image defines the affinity space fp ≡ Ip) provides
satisfactory denoising result especially for low level noise
corruption due to the edge preserving ability of this filtering.
However, the results are inferior compared to state-of-the-art
denoising methods [6], [9], [16], [10], [11], [32], especially
for high noise corruption level. This high noise sensitivity can
be explained by the support region (filter kernel) restriction.
In other words, high noise isolates many pixels of the filtered
image, which form the neighborhood in the uncorrupted im-
age. To address this phenomenon we propose to pre-filter the
affinity space with the Gaussian kernel. More exactly, first we
filter I

H = I ∗ G
(
0, σ2

G

)
, (14)

where σ2
G is the Gaussian kernel variance. Then the function

H is used for the filter affinity space formation in Eq. (2)
and Eq. (4). Finally, this affinity space is used for the filter
in Eq. (1), where f is a noisy image and F the reconstructed
image. Note that the input image f remains unchanged and
the filter output H in Eq. (14) is only applied for the affinity
space computation. Here we aim to transform the filter affinity
space to suppress the intrinsic outliers of this space caused by
Gaussian noise. This local filter kernel reduction works only
for the pixel-to-pixel affinity spaces like in the case of the
classic bilateral filtering or the geodesic distance based filter.
In contrast, filters that use patch affinity (such as non-local
mean filter) cannot be improved by such a kernel transfor-
mation because this kernel initially includes local averaging

due to the patch based norm. We found that the parameter
σG (14) depends on the noise level and the noisy image
gradient standard deviation. In our experiments this parameter
is relatively small (σG < 1.5 for noise σnoise < 70) and
cannot smooth the edges even in the affinity space. In Section
IV we motivate and explain more carefully how to calculate
the σG parameter.

The proposed version of the recursive geodesic distance
filters belongs to the class of filters that has computational
complexity O(1). In other words, the total number of com-
putational operations per image Timg is proportional to the
total numbers of pixels in the image P : Timg ∝ ηP , where
η � P . Because we calculate recursively 8 functions (F i

and F̄ i) one might call our algorithm as O(8P) computational
complexity. In contrast, most state-of-the-art approaches [6],
[9], [10], [11], [16], [32] use nonlocal patch similarity and the
complexity multiplier η � 8. Thus our filter is considerably
faster. Here we have to note that one iteration of 1D recursive
geodesic computation [12], [29] for a 2D image has O(4P)
computational complexity and hence it is twice as fast as
our algorithm. However, in [12], [29] multiple iterations of
the algorithm are assumed (at least two iterations), thus our
method obtains a more accurate approximation to the true
geodesic kernel for the same computation time. On a single 2.4
GHtz CPU core, for processing a 1 megapixel color image the
runtime is 0.32 seconds using two iterations of the geodesic
distance filters 1D which is similar to the 0.29 seconds using
one iteration of our approach.

For several test images the proposed filter outperforms state-
of-the-art algorithms for denoising. In all cases we found
that Gaussian filtering of the affinity space leads to improved
results. In the experimental section we evaluate the geodesic
distance filters both without (indicated by GDF) and with
(indicated by GDF (σG 6= 0)) affinity space pre-filtering.

IV. EXPERIMENTS

Our experimental section is divided into two parts. Firstly,
we confirm the advantage of the proposed 2D geodesic dis-
tance filters realization over the known 1D realization imple-
menting the geodesic distance filters to several experiments
including edge preserving denoising. Then we consider the
results of the proposed geodesic distance filters denoising filter
in comparison with state-of-the-art methods.

A. Comparison two of 1D with 2D recursion

In Section II we show theoretically that our 2D recursion
better approximates the true geodesic distance filters than the
known 1D iterative recursions. In this Subsection we show
that the proposed 2D recursive calculation also improves the
result of the filter application.

The first experiment is the direct application of the geodesic
distance filters (where the filtered image defines the affinity
space fp ≡ Ip) for the denoising problem. For this experiment
we use the standard color test images including Parrots, Lena,
Airplane, Peppers and Fruits images and put individual image
comparisons in Table I.
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(a) (b) (c) (d)

Fig. 5. Illustration of the resultant weights Wq obtained by different true and recursive geodesic based kernels: (a) - the ground truth weights WGT
q ; (b) -

the weights W 2D
q of the proposed approach; (c) - the composite weights max

(
WXY
q ,WYX

q

)
[29]; (d) - the weights WXY

q of 1D recursion.

(a) (b) (c) (d)
Fig. 6. Illustration of the filter response to the delta function signal in a homogeneous noisy image: (a) - the 1D filter responses after the first iteration; (b) -
the 1D filter responses after four iterations; (c) - the 2D filter responses after the first iteration; (d) - the 2D filter responses after two iterations.

(a) (b) (c) (d)
Fig. 7. Illustration of the filter response to the delta function signal in a narrow region of the test image Two: (a) - the 1D filter responses after the first
iteration; (b) - the 1D filter responses after four iterations; (c) - the 2D filter responses after the first iteration; (d) - the 2D filter responses after two iterations.

The filter parameters in Eq. (2) and Eq. (3) are chosen as
follows

σr = σs = ασnoise, (15)

where σnoise is the Gaussian noise standard deviation and α
is a parameter, which is equal to 1.3 for gray scale images and
is equal to 2.4 (≈ 1.3

√
3) for RGB images. Here we assume

that the standard deviation of our filter kernel is proportional
to the standard deviation of the Gaussian noise, which is
a usual assumption for denoising methods (e. g. the NLM
algorithm). The parameter α is the averaged and rounded value
of particular optimal values experimentally obtained using
different noise levels (3 < σnoise < 70) and different images
(30 images of public internet datasets). Here the particular
optimal value of the parameter supposes to maximize the value
of the PSNR criteria for each individual noise and image. In
our averaging experiments the difference between the proposed

value and each individual PSNR maximum does not exceed
0.35 dB. Experimentally we found that the change of the α
parameter by 5% modifies the PSNR inside the 0.3 dB interval.

Table I presents the PSNR (dB) values obtained by the
proposed 2D and 1D recursive filters. The latter realization of
the filter is presented in two versions: one and two iterations.
In the case of two iterations, the kernel parameters must be
consistent with the one iteration version. Thus we use the
following formula which is taken from [12]:

σi = σ
√

3
2N−i√
4N − 1

, (16)

where σi is the standard deviation for the kernel used in the
i-th iteration, N is the total number of iterations, and σ is
the standard deviation of the desired kernel. One can see in
Table I that the proposed 2D filter outperforms its analogues
realized by the 1D recursion.
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(a) (b)

(c) (d)

(e) (f)
Fig. 8. Visual comparison of edge preserving denoising performance for
the Lena test image with the 1D filter, the 2D filter and the proposed GDF
(σG 6= 0) denoising filter: (a) - The zoomed original Lena test image; (b) - The
original Lena test image contaminated by the Gaussian noise σnoise = 40
(PSNR = 16.52 dB); (c) the result of filtering the Lena image contaminated
by the Gaussian noise σnoise = 40 with the 1D filter one iteration (PSNR =
26.62 dB); (d) - the result of filtering the Lena image with the 1D filter two
iteration (PSNR = 26.83); (e)- the result of filtering with 2D filter (PSNR =
27.04 dB); (f) the result of filtering the Lena image with the proposed GDF
(σG = 1.25) denoising filter (PSNR = 28.41).

Note, that even the 1D recursive filter is applied with two
iterations, the quality of filtering is still worse than the filtering
of the proposed 2D recursion. This fact is illustrated in Fig. 8,
where a visual comparison shows that the filtering result of
the proposed method is smoother than the conventional 1D
approach. The experiment in Fig. 8 is performed with the Lena
color test image contaminated by Gaussian noise σnoise = 40
and we also include the result of the proposed GDF (σG 6= 0)
denoising filter for visual comparison. The stripe like structure
are most visible in Fig. 8 (b), where one iteration of the 1D
recursion is applied.

To give a more solid proof to the claim in the paper we
prepare Table II, where a comparison based on averaging
over the Berkeley segmentation dataset [3] including 500 color
images is proposed. We can see in Table II that the proposed

2D filter outperforms the realization with the 1D recursion.
In the second denoising experiment a test image with

vertical stripes is taken and contaminated by Gaussian noise
with the fixed value of sigma σnoise = 15. Error values are
measured in dB for different rotation angles β. The result of
this experiment is summarized in Table III. One can see that
the proposed approach is more robust to rotation.

B. Denoising experiments with Geodesic distance based filter

The second part of our experiment presents results of de-
noising in comparison with state-of-the-art methods: nonlocal
means (NLM) [6], double noise similarity (DNS) [16], block-
matching and 3D (BM3D) filtering [9], denoising with prob-
abilistic patch-based weights (PPB) [10]. The experiments
are carried out on standard test images: House, Cameraman,
Lena, and Barbara, which are contaminated by additive white
Gaussian noise with different variance σ2

noise. The results of
these experiments are summarized in Table IV, where the GDF
method is the direct implementation of the geodesic distance
filters with the intrinsic parameters σs = σr as in Eq. (15). The
proposed GDF (σG 6= 0) algorithm is described in Section III.
The intrinsic parameters of the proposed method are:

σG = γ
√

2σnoise

σ∆I
,

σs = σr = λ+ µσnoise,
(17)

where σ∆I is the standard deviation of the gradients of the
noisy image I , and other constant factors are chosen as γ =
1.2, λ = 3 and µ = 0.3. For the RGB images µ is equal to 0.5
(≈ 0.3

√
3). Note, in the scenario without noise our algorithm

performs with nonzero parameters σs = σr = 3, however the
impact of filtering in this case is almost neglectable because
the order of the error is approximately equal to 50 dB. Here we
again assume that the standard deviation of our affinity space
transformation σG is proportional to the standard deviation
of the Gaussian noise like in the case of the parameter α
in (15). On the other hand this parameter should not over-
smooth rich texture images, thus the parameter has to be
inversely proportional to the gradient characteristics of the
image. Because the affinity space transform in (14) compresses
distances of this space non-linearly, the base parameter of the
geodesic distance based filter kernel σs and σr is not simply
proportional to the noise standard deviation, but depends on
σnoise linearly. Also the value of µ is now less than its
analogues α (15). All three parameters in (17) are the averaged
and rounded values of particular optimal values experimentally
obtained using different noise levels and images, like in the
case of the parameter estimation for Eq. (15). Parameters and
performance of other filters in Table IV are taken from the
paper [16].

From Table IV one can see that our GDF (σG 6= 0) algo-
rithm outperforms state-of-the-art methods for the piecewise-
constant images like House, Cameraman and shows compa-
rable results for Lena and Barbara images. One can see that
the proposed affinity space pre-filtering process considerably
improves performance of the geodesic distance filter. It is
interesting to note that our affinity space transform strategy
improves the results of the classic bilateral filter and we
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TABLE I
COMPARISON OF EDGE PRESERVING DENOISING PERFORMANCE FOR 1D FILTER AND 2D FILTER WITH DIFFERENT TEST IMAGES AND DIFFERENT

GAUSSIAN NOISE σnoise . ERROR VALUES ARE MEASURED IN DB

Algorithm Parrots σnoise = 10 Lena σnoise = 20 Airplane σnoise = 30 Pappers σnoise = 40 Fruits σnoise = 50

1D filter 1 iteration 35.08 29.72 27.58 25.28 24.04
1D filter 2 iterations 35.11 29.78 27.70 25.41 24.24

2D filter 35.52 30.21 28.16 25.96 24.92

TABLE II
COMPARISON OF EDGE PRESERVING DENOISING PERFORMANCE FOR 1D FILTER AND 2D FILTER BASED ON AVERAGING OVER BERKELEY

SEGMENTATION DATASET OF 500 IMAGES FOR DIFFERENT GAUSSIAN NOISE σnoise . ERRORS REPRESENT THE AVERAGE PSNR VALUES OVER ALL 500
IMAGES OF THE DATASET AND ARE MEASURED IN DB

Algorithm σnoise = 20 σnoise = 30 σnoise = 40 σnoise = 50 σnoise = 60 σnoise = 70 σnoise = 80 σnoise = 80

1D filter 1 iteration 28.71 26.21 24.51 23.19 22.14 21.29 20.24 19.93
1D filter 2 iterations 28.78 26.34 24.63 23.33 22.29 21.46 20.75 20.15

2D filter 28.96 26.61 25.01 23.75 22.77 21.97 21.25 20.65

TABLE III
COMPARISON OF EDGE PRESERVING DENOISING PERFORMANCE FOR 1D FILTER AND 2D FILTER WITH A VERTICAL STRIPES TEST IMAGE AND

DIFFERENT ROTATION ANGLES β . GAUSSIAN NOISE IN THIS EXPERIMENT IS FIXED σnoise = 15. THE DISTANCE BETWEEN WHITE AND BLACK STRIPES
IN THE EXPERIMENT IS 4 PIXELS. ERROR VALUES ARE MEASURED IN DB.

Algorithm β = 0◦ β = 15◦ β = 30◦ β = 45◦ β = 60◦ β = 75◦ β = 90◦

1D filter 1 iteration 32.7 32.3 32.1 32.1 32.2 32.4 32.8
1D filter 2 iterations 32.9 32.5 32.3 32.3 32.3 32.6 33.0

2D filter 34.8 34.7 34.8 34.8 34.8 34.7 34.7

include experiments with this filter (BF) in Table IV for both
version: σG = 0 and σG 6= 0. For the bilateral filtering we
use the same approach as is described in Eq. (14), however
in this case we set the parameter α = 1.4. (15) and the
parameter γ = 1.4. (17). Also the results of filtering with
the 1D recursive geodesic calculation (GDF 1D) are included
in our final table for comparison.

In Fig. 9 qualitative performance of the proposed algorithm
is illustrated. In these experiments we use the same four
images as in previous experiments, but for different noise
standard deviation: Barbara σnoise = 10; Lena σnoise = 20;
Cameraman σnoise = 40; House σnoise = 60.

Almost all state-of-the-art method use the nonlocal patch
similarity approach [6], [10], [16] or its modified versions
[9], [11], [32]. Formally all these algorithm have O(1) = O(P)
computational complexity, where P is the number of pixels,
or O(PlogP) in the case where the fast Fourier transform is
used. However the size of sliding windows that is used in this
technique is usually comparable with the size of the image P.
For example, the computation complexity of the NLM filter
is O(21 × 21 × 7 × 7P). Thus this kind of algorithms is
demanding. In contrast the proposed version of the recursive
geodesic distance filters has computational complexity equal
to O(8P). For the implementation of the Gaussian filters we
also use the O(1) fast recursive filter [14], [30]. Thus our filter
is considerably faster than most state-of-the-art approaches.

V. CONCLUSIONS

The main contribution of the presented paper is the 2D
recursion, which improved performance of the conventional

1D geodesic distance filters. We show that our approach
approximates the true geodesic distance filters better than the
1D geodesic distance filters and outperforms the result of
the 1D filtering for denoising. The second contribution of
the paper is a new denoising method. The idea is to pre-
filter by the Gaussian filter to improve the affinity space for
the further filtering with the geodesic distance based kernel.
Experimental evaluation of our denoising method demonstrate
comparable and for piecewise-constant images better results
than state-of-the-art approaches, while our algorithm is faster
with computational complexity O(8P).

In a future work we plan to extend application of the
proposed filter. Our geodesic distance based recursive filter
can be used in energy minimization problems with fully
connected MRF model. Now for this purpose the bilateral filter
with classical kernel is used and that approach has several
theoretical drawbacks, which we intend to overcome with the
proposed recursive geodesic distance filters. In addition, we
are interested in applying the filter for optical flow, stereo and
fast superpixel computation.
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(Barbara) (Lena) (Cameraman) (House)

Fig. 9. Result of denoising with the GDF (σG 6= 0), the BF (σG 6= 0) and the NLM algorithms for different noise and different images: Barbara σnoise = 10
(σG = 0.68); Lena σnoise = 20 (σG = 1.14); Cameraman σnoise = 40 (σG = 1.27); House σnoise = 60 (σG = 1.34). (First row) original images;
(Second row) noisy images; (Third row) images restored with the GDF; (Fourth row) images restored with the BF; (Fifth row) images restored with the
NLM.
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TABLE IV
PSNR ERROR VALUES OF ESTIMATED IMAGES WITH DIFFERENT DENOISING METHODS FOR IMAGES CORRUPTED BY DIFFERENT NOISE STANDARD

DEVIATION σnoise . THE VALUES OF σG HERE ARE CALCULATED ACCORDING TO EQ. (17) AND WE PUT THESE VALUES IN THE BRACKETS

Method NLM [6] PPB [10] DNS2 [16] BM3D [9] BF GDF 1D GDF BF (σG 6= 0) GDF (σG 6= 0)
House

σ = 10 35.08 34.39 34.69 36.71 32.18 33.76 34.63 37.75 (1.21) 38.00 (1.12)
σ = 20 32.38 31.70 32.08 33.77 26.37 29.34 30.89 35.15 (1.29) 34.84 (1.19)
σ = 40 28.37 29.06 29.42 30.65 20.32 26.03 27.10 31.12 (1.36) 31.19 (1.26)
σ = 60 25.69 26.62 27.57 28.74 17.75 22.87 25.10 27.75 (1.45) 28.16 (1.34)

Cameraman

σ = 10 30.78 30.51 31.52 34.18 31.92 33.24 33.70 34.15 (1.07) 35.92 (0.99)
σ = 20 28.71 28.40 28.60 30.48 26.78 28.88 29.80 31.31 (1.28) 32.39 (1.18)
σ = 40 25.91 25.74 26.23 27.18 20.63 24.29 25.67 27.98 (1.38) 28.31 (1.27)
σ = 60 23.63 23.37 24.70 25.32 17.28 21.98 23.31 25.25 (1.46) 25.28 (1.34)

Lena

σ = 10 34.66 34.06 34.42 35.93 30.64 32.15 32.64 32.48 (1.04) 33.47 (0.96)
σ = 20 31.63 31.44 31.77 33.05 25.03 28.40 29.39 30.47 (1.24) 31.04 (1.14)
σ = 40 28.23 28.61 29.12 29.86 19.41 24.44 26.07 27.95 (1.35) 28.20 (1.25)
σ = 60 26.19 26.57 27.54 28.27 17.18 22.52 24.17 25.59 (1.44) 25.80 (1.33)

Barbara

σ = 10 33.25 32.09 32.56 34.98 29.80 30.78 30.96 30.13 (0.73) 31.46 (0.68)
σ = 20 30.32 29.35 29.79 31.78 24.08 26.35 26.71 25.40 (1.06) 26.01 (1.06)
σ = 40 26.42 26.84 26.99 27.99 18.94 22.76 23.56 23.74 (1.28) 23.83 (1.18)
σ = 60 24.13 24.57 25.07 26.28 16.42 21.16 22.16 22.56 (1.40) 22.67 (1.29)

APPENDIX

Proposition 1. The proposed calculation scheme in Fig. 4
preserve the true incremental geodesic distance between pixels
if the pixel p is the only signal source (suppose we mask all
unit weights except in the pixel p).

In other words, we need to prove that using alternative
choice between Eq. (11) and Eq. (12) in calculation integral
weights the following expression holds

dp,q = min
P inc

p,q

∑
ε∈P inc

p,q

uε, (18)

or taking into account Eq. (4) the equivalent expression must
hold:

wp,q = max
P inc

p,q

∏
ε∈P inc

p,q

ωε (19)

Firstly, let us exclude two trivial cases when the pixels
p and q belong to the same vertical or horizontal grid line.
In these particular cases Eq. (19) holds by our definition of
the incremental path. One can find the optimal (in sense of
Eq. (19)) incremental path and value wp,q , corresponding to
this path by implementing step by step dynamic program-
ming optimization in each pixel. This calculation scheme is
illustrated in Fig. 1 (left) and also can be formalized by the
following expression:

wp,q = max

(
ωȳ,qwp,ȳ
ωx̄,qwp,x̄

)
(20)

Note, the illustration in Fig. 1 (left) corresponds to the first
quadrant and further we provide proves only for this quadrant,
however for other quadrants proves can be derived in the sim-
ilar way. Thus, we have to prove that the switched recursion
between Eq. (11) and Eq. (12) achieves the same result in
the case when the pixel p is the only signal source. The last

condition can be formalized as follows

wk,k =

{
1← k = p
0← otherwise

}
, (21)

then the switched recursion of Eq. (11) and Eq. (12) for
integral weights becomes

W 1
q = max

(
wq,q + ωx̄,qW̄

1
x̄ + ωȳ,qW

1
ȳ

wq,q + ωȳ,qW̄
3
ȳ + ωx̄,qW

1
x̄

)
(22)

Taking into account that integral weights W̄ 1
x̄ and W̄ 3

ȳ

include only zero weights wk,k and also equal to zero, Eq. (21)
can be simplified first to

W 1
q = max

(
ωȳ,qW

1
ȳ

ωx̄,qW
1
x̄

)
, (23)

and then

W 1
q = max

(
ωȳ,qwp,ȳ
ωx̄,qwp,x̄

)
, (24)

because integral weights W 1
ȳ and W 1

x̄ include only one non-
zero weight wp,p.

Comparing Eq. (20) and Eq. (24) one can see that both
step by step recursions find optimal incremental path from the
graph node p to the node q, and Wq = wp,q . Thus we prove
our Proposition 1.

Proposition 2. The proposed calculation scheme maximizes
the integral weight Wq value relative to the direct implemen-
tation of the algorithms with Eq. (11) or Eq. (12).

As in the case of Proposition 1 the proof is derived only
for the first quadrant of the calculation tree.

Our second assertion can be formalized as follows

W 1:2D
q ≥W 1:XY

q ;
W 1:2D
q ≥W 1:Y X

q .
(25)

Let us prove this proposition by induction.
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Firstly let us rewrite Eq. (22) as

W 1:2D
q = max

(
1 + ωx̄,qW̄

1
x̄ + ωȳ,qW

1:2D
ȳ

1 + ωȳ,qW̄
3
ȳ + ωx̄,qW

1:2D
x̄

)
(26)

If q is the only node of the tree in Fig. 3 (middle), then the
proposition in Eq. (25) holds.

Thus we have to prove that if similar conditions hold for
previous step formalized as follows(

W 1:2D
ȳ ≥W 1:XY

ȳ W 1:2D
ȳ ≥W 1:Y X

ȳ

W 1:2D
x̄ ≥W 1:XY

x̄ W 1:2D
x̄ ≥W 1:Y X

x̄

)
, (27)

then Eq. (25) holds for the next step, in other word, for any
node q.

The proof is the two follow chain inequalities:

W 1:2D
q = max

(
1 + ωx̄,qW̄

1
x̄ + ωȳ,qW

1:2D
ȳ

1 + ωȳ,qW̄
3
ȳ + ωx̄,qW

1:2D
x̄

)
≥ 1 + ωx̄,qW̄

1
x̄ + ωȳ,qW

1:Y X
ȳ = W 1:Y X

q ;
(28)

and

W 1:2D
q = max

(
1 + ωx̄,qW̄

1
x̄ + ωȳ,qW

1:2D
ȳ

1 + ωȳ,qW̄
3
ȳ + ωx̄,qW

1:2D
x̄

)
≥ 1 + ωȳ,qW̄

3
ȳ + ωx̄,qW

1:XY
x̄ = W 1:XY

q ;
(29)

which can be obtained by substitution condition from Eq. (27)
to Eqs. (28)-(29).
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