|   | 
Details
   web
Records Links
Author Aleksandr Setkov; Fabio Martinez Carillo; Michele Gouiffes; Christian Jacquemin; Maria Vanrell; Ramon Baldrich edit  doi
isbn  openurl
Title DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition Type Conference Article
Year 2015 Publication Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II Abbreviated Journal  
Volume 9475 Issue Pages 463-473  
Keywords Projector-camera systems; Feature descriptors; Object recognition  
Abstract Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.  
Address  
Corporate Author Thesis  
Publisher Springer International Publishing Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title LNCS  
Series Volume Series Issue Edition  
ISSN 0302-9743 ISBN 978-3-319-27862-9 Medium  
Area Expedition Conference ISVC  
Notes CIC Approved no  
Call Number (up) Admin @ si @ SMG2015 Serial 2736  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 278-285  
Keywords  
Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
Address Providence, Rhode Island  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number (up) Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras edit   pdf
doi  openurl
Title The Photometry of Intrinsic Images Type Conference Article
Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 1494-1501  
Keywords  
Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.  
Address Columbus; Ohio; USA; June 2014  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPR  
Notes CIC; 600.052; 600.051; 600.074 Approved no  
Call Number (up) Admin @ si @ SPB2014 Serial 2506  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; S. Sancho; Ramon Baldrich; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Color-based data augmentation for Reflectance Estimation Type Conference Article
Year 2018 Publication 26th Color Imaging Conference Abbreviated Journal  
Volume Issue Pages 284-289  
Keywords  
Abstract Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.  
Address Vancouver; November 2018  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CIC  
Notes CIC Approved no  
Call Number (up) Admin @ si @ SSB2018a Serial 3129  
Permanent link to this record
 

 
Author Javier Vazquez edit  openurl
Title Content-based Colour Space Type Report
Year 2007 Publication CVC Technical Report #116 Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract  
Address CVC (UAB)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Vaz2007b Serial 828  
Permanent link to this record
 

 
Author Javier Vazquez edit  openurl
Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
 
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Graham D. Finlayson  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Vaz2011a Serial 1785  
Permanent link to this record
 

 
Author Eduard Vazquez edit  openurl
Title Unsupervised image segmentation based on material reflectance description and saliency Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Image segmentations aims to partition an image into a set of non-overlapped regions, called segments. Despite the simplicity of the definition, image segmentation raises as a very complex problem in all its stages. The definition of segment is still unclear. When asking to a human to perform a segmentation, this person segments at different levels of abstraction. Some segments might be a single, well-defined texture whereas some others correspond with an object in the scene which might including multiple textures and colors. For this reason, segmentation is divided in bottom-up segmentation and top-down segmentation. Bottom up-segmentation is problem independent, that is, focused on general properties of the images such as textures or illumination. Top-down segmentation is a problem-dependent approach which looks for specific entities in the scene, such as known objects. This work is focused on bottom-up segmentation. Beginning from the analysis of the lacks of current methods, we propose an approach called RAD. Our approach overcomes the main shortcomings of those methods which use the physics of the light to perform the segmentation. RAD is a topological approach which describes a single-material reflectance. Afterwards, we cope with one of the main problems in image segmentation: non supervised adaptability to image content. To yield a non-supervised method, we use a model of saliency yet presented in this thesis. It computes the saliency of the chromatic transitions of an image by means of a statistical analysis of the images derivatives. This method of saliency is used to build our final approach of segmentation: spRAD. This method is a non-supervised segmentation approach. Our saliency approach has been validated with a psychophysical experiment as well as computationally, overcoming a state-of-the-art saliency method. spRAD also outperforms state-of-the-art segmentation techniques as results obtained with a widely-used segmentation dataset show  
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Place of Publication Editor Ramon Baldrich  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ Vaz2011b Serial 1835  
Permanent link to this record
 

 
Author Ernest Valveny; Robert Benavente; Agata Lapedriza; Miquel Ferrer; Jaume Garcia; Gemma Sanchez edit   pdf
doi  openurl
Title Adaptation of a computer programming course to the EXHE requirements: evaluation five years later Type Miscellaneous
Year 2012 Publication European Journal of Engineering Education Abbreviated Journal  
Volume 37 Issue 3 Pages 243-254  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes DAG; CIC; OR; invisible;MV Approved no  
Call Number (up) Admin @ si @ VBL2012 Serial 2070  
Permanent link to this record
 

 
Author Javier Vazquez; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Naming constraints constancy Type Conference Article
Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Different studies have shown that languages from industrialized cultures
share a set of 11 basic colour terms: red, green, blue, yellow, pink, purple, brown, orange, black, white, and grey (Berlin & Kay, 1969, Basic Color Terms, University of California Press)( Kay & Regier, 2003, PNAS, 100, 9085-9089). Some of these studies have also reported the best representatives or focal values of each colour (Boynton and Olson, 1990, Vision Res. 30,1311–1317), (Sturges and Whitfield, 1995, CRA, 20:6, 364–376). Some further studies have provided us with fuzzy datasets for color naming by asking human observers to rate colours in terms of membership values (Benavente -et al-, 2006, CRA. 31:1, 48–56,). Recently, a computational model based on these human ratings has been developed (Benavente -et al-, 2008, JOSA-A, 25:10, 2582-2593). This computational model follows a fuzzy approach to assign a colour name to a particular RGB value. For example, a pixel with a value (255,0,0) will be named 'red' with membership 1, while a cyan pixel with a RGB value of (0, 200, 200) will be considered to be 0.5 green and 0.5 blue. In this work, we show how this colour naming paradigm can be applied to different computer vision tasks. In particular, we report results in colour constancy (Vazquez-Corral -et al-, 2012, IEEE TIP, in press) showing that the classical constraints on either illumination or surface reflectance can be substituted by
the statistical properties encoded in the colour names. [Supported by projects TIN2010-21771-C02-1, CSD2007-00018].
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference AV A  
Notes CIC Approved no  
Call Number (up) Admin @ si @ VBV2012 Serial 2131  
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
Title Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures Type Journal Article
Year 2011 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
Volume 33 Issue 5 Pages 917-930  
Keywords  
Abstract The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.  
Address Los Alamitos; CA; USA;  
Corporate Author Thesis  
Publisher IEEE Computer Society Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0162-8828 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ VBW2011 Serial 1715  
Permanent link to this record
 

 
Author Maria Vanrell; Naila Murray; Robert Benavente; C. Alejandro Parraga; Xavier Otazu; Ramon Baldrich edit   pdf
url  isbn
openurl 
Title Perception Based Representations for Computational Colour Type Conference Article
Year 2011 Publication 3rd International Workshop on Computational Color Imaging Abbreviated Journal  
Volume 6626 Issue Pages 16-30  
Keywords colour perception, induction, naming, psychophysical data, saliency, segmentation  
Abstract The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control. With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space.  
Address Milan, Italy  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor Raimondo Schettini, Shoji Tominaga, Alain Trémeau  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title LNCS  
Series Volume Series Issue Edition  
ISSN ISBN 978-3-642-20403-6 Medium  
Area Expedition Conference CCIW  
Notes CIC Approved no  
Call Number (up) Admin @ si @ VMB2011 Serial 1733  
Permanent link to this record
 

 
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson edit  url
doi  openurl
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 6 (7) Pages 1-14  
Keywords  
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ VOV2012 Serial 1998  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages 1997-2007  
Keywords  
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Joost Van de Weijer; Robert Benavente; Maria Vanrell; Cordelia Schmid; Ramon Baldrich; Jacob Verbeek; Diane Larlus edit   pdf
openurl 
Title Color Naming Type Book Chapter
Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
Volume Issue 17 Pages 287-317  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher John Wiley & Sons, Ltd. Place of Publication Editor Theo Gevers;Arjan Gijsenij;Joost Van de Weijer;Jan-Mark Geusebroek  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number (up) Admin @ si @ WBV2012 Serial 2063  
Permanent link to this record
 

 
Author Joost Van de Weijer; Shida Beigpour edit   pdf
url  isbn
openurl 
Title The Dichromatic Reflection Model: Future Research Directions and Applications Type Conference Article
Year 2011 Publication International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
Volume Issue Pages  
Keywords dblp  
Abstract The dichromatic reflection model (DRM) predicts that color distributions form a parallelogram in color space, whose shape is defined by the body reflectance and the illuminant color. In this paper we resume the assumptions which led to the DRM and shortly recall two of its main applications domains: color image segmentation and photometric invariant feature computation. After having introduced the model we discuss several limitations of the theory, especially those which are raised once working on real-world uncalibrated images. In addition, we summerize recent extensions of the model which allow to handle more complicated light interactions. Finally, we suggest some future research directions which would further extend its applicability.  
Address Algarve, Portugal  
Corporate Author Thesis  
Publisher SciTePress Place of Publication Editor Mestetskiy, Leonid and Braz, José  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN 978-989-8425-47-8 Medium  
Area Expedition Conference VISIGRAPP  
Notes CIC Approved no  
Call Number (up) Admin @ si @ WeB2011 Serial 1778  
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan edit   pdf
doi  isbn
openurl 
Title Fusing Color and Shape for Bag-of-Words Based Object Recognition Type Conference Article
Year 2013 Publication 4th Computational Color Imaging Workshop Abbreviated Journal  
Volume 7786 Issue Pages 25-34  
Keywords Object Recognition; color features; bag-of-words; image classification  
Abstract In this article we provide an analysis of existing methods for the incorporation of color in bag-of-words based image representations. We propose a list of desired properties on which bases fusing methods can be compared. We discuss existing methods and indicate shortcomings of the two well-known fusing methods, namely early and late fusion. Several recent works have addressed these shortcomings by exploiting top-down information in the bag-of-words pipeline: color attention which is motivated from human vision, and Portmanteau vocabularies which are based on information theoretic compression of product vocabularies. We point out several remaining challenges in cue fusion and provide directions for future research.  
Address Chiba; Japan; March 2013  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0302-9743 ISBN 978-3-642-36699-4 Medium  
Area Expedition Conference CCIW  
Notes CIC; 600.048 Approved no  
Call Number (up) Admin @ si @ WeK2013 Serial 2283  
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan; Marc Masana edit   pdf
doi  isbn
openurl 
Title Interactive Visual and Semantic Image Retrieval Type Book Chapter
Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
Volume 48 Issue Pages 31-35  
Keywords  
Abstract One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.  
Address  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor Angel Sappa; Jordi Vitria  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
Area Expedition Conference  
Notes CIC; 605.203; 600.048 Approved no  
Call Number (up) Admin @ si @ WKC2013 Serial 2284  
Permanent link to this record
 

 
Author Danna Xue; Luis Herranz; Javier Vazquez; Yanning Zhang edit  url
doi  openurl
Title Burst Perception-Distortion Tradeoff: Analysis and Evaluation Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.  
Address Rodhes Islands; Greece; June 2023  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ICASSP  
Notes CIC; MACO Approved no  
Call Number (up) Admin @ si @ XHV2023 Serial 3909  
Permanent link to this record