toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Ivan Huerta; Marco Pedersoli; Jordi Gonzalez; Alberto Sanfeliu edit  doi
openurl 
  Title Combining where and what in change detection for unsupervised foreground learning in surveillance Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 3 Pages 709-719  
  Keywords Object detection; Unsupervised learning; Motion segmentation; Latent variables; Support vector machine; Multiple appearance models; Video surveillance  
  Abstract Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on generic object detection datasets currently exhibit very poor performance when applied to surveillance datasets because of the unconstrained nature of such environments in terms of types and appearances of objects. In this paper, we take advantage of change detection for training multiple foreground detectors in an unsupervised manner. We use statistical learning techniques which exploit the use of latent parameters for selecting the best foreground model parameters for a given scenario. In essence, the main novelty of our proposed approach is to combine the where (motion segmentation) and what (learning procedure) in change detection in an unsupervised way for improving the specificity and generalization power of foreground detectors at the same time. We propose a framework based on latent support vector machines that, given a noisy initialization based on motion cues, learns the correct position, aspect ratio, and appearance of all moving objects in a particular scene. Specificity is achieved by learning the particular change detections of a given scenario, and generalization is guaranteed since our method can be applied to any possible scene and foreground object, as demonstrated in the experimental results outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ HPG2015 Serial 2589  
Permanent link to this record
 

 
Author (down) Ivan Huerta; Ariel Amato; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Exploiting Multiple Cues in Motion Segmentation Based on Background Subtraction Type Journal Article
  Year 2013 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 100 Issue Pages 183–196  
  Keywords Motion segmentation; Shadow suppression; Colour segmentation; Edge segmentation; Ghost detection; Background subtraction  
  Abstract This paper presents a novel algorithm for mobile-object segmentation from static background scenes, which is both robust and accurate under most of the common problems found in motionsegmentation. In our first contribution, a case analysis of motionsegmentation errors is presented taking into account the inaccuracies associated with different cues, namely colour, edge and intensity. Our second contribution is an hybrid architecture which copes with the main issues observed in the case analysis by fusing the knowledge from the aforementioned three cues and a temporal difference algorithm. On one hand, we enhance the colour and edge models to solve not only global and local illumination changes (i.e. shadows and highlights) but also the camouflage in intensity. In addition, local information is also exploited to solve the camouflage in chroma. On the other hand, the intensity cue is applied when colour and edge cues are not available because their values are beyond the dynamic range. Additionally, temporal difference scheme is included to segment motion where those three cues cannot be reliably computed, for example in those background regions not visible during the training period. Lastly, our approach is extended for handling ghost detection. The proposed method obtains very accurate and robust motionsegmentation results in multiple indoor and outdoor scenarios, while outperforming the most-referred state-of-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ HAR2013 Serial 1808  
Permanent link to this record
 

 
Author (down) Ikechukwu Ofodile; Ahmed Helmi; Albert Clapes; Egils Avots; Kerttu Maria Peensoo; Sandhra Mirella Valdma; Andreas Valdmann; Heli Valtna Lukner; Sergey Omelkov; Sergio Escalera; Cagri Ozcinar; Gholamreza Anbarjafari edit  url
doi  openurl
  Title Action recognition using single-pixel time-of-flight detection Type Journal Article
  Year 2019 Publication Entropy Abbreviated Journal ENTROPY  
  Volume 21 Issue 4 Pages 414  
  Keywords single pixel single photon image acquisition; time-of-flight; action recognition  
  Abstract Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject’s privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene.
Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47% accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent
neural network.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ OHC2019 Serial 3319  
Permanent link to this record
 

 
Author (down) Ignasi Rius; Jordi Gonzalez; Javier Varona; Xavier Roca edit  doi
openurl 
  Title Action-specific motion prior for efficient bayesian 3D human body tracking Type Journal Article
  Year 2009 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 42 Issue 11 Pages 2907–2921  
  Keywords  
  Abstract In this paper, we aim to reconstruct the 3D motion parameters of a human body
model from the known 2D positions of a reduced set of joints in the image plane.
Towards this end, an action-specific motion model is trained from a database of real
motion-captured performances. The learnt motion model is used within a particle
filtering framework as a priori knowledge on human motion. First, our dynamic
model guides the particles according to similar situations previously learnt. Then, the solution space is constrained so only feasible human postures are accepted as valid solutions at each time step. As a result, we are able to track the 3D configuration of the full human body from several cycles of walking motion sequences using only the 2D positions of a very reduced set of joints from lateral or frontal viewpoints.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number ISE @ ise @ RGV2009 Serial 1159  
Permanent link to this record
 

 
Author (down) Idoia Ruiz; Joan Serrat edit  doi
openurl 
  Title Hierarchical Novelty Detection for Traffic Sign Recognition Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 12 Pages 4389  
  Keywords Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision  
  Abstract Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.154 Approved no  
  Call Number Admin @ si @ RuS2022 Serial 3684  
Permanent link to this record
 

 
Author (down) Idoia Ruiz; Bogdan Raducanu; Rakesh Mehta; Jaume Amores edit   pdf
url  openurl
  Title Optimizing speed/accuracy trade-off for person re-identification via knowledge distillation Type Journal Article
  Year 2020 Publication Engineering Applications of Artificial Intelligence Abbreviated Journal EAAI  
  Volume 87 Issue Pages 103309  
  Keywords Person re-identification; Network distillation; Image retrieval; Model compression; Surveillance  
  Abstract Finding a person across a camera network plays an important role in video surveillance. For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed. We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, to deep learning based techniques, using image classification networks, ResNet and MobileNets. Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time. We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets, showing that distillation helps reducing the computational cost at inference time while even increasing the accuracy performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ RRM2020 Serial 3401  
Permanent link to this record
 

 
Author (down) Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey edit  doi
openurl 
  Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
  Year 2022 Publication Journal of Archaeological Science Abbreviated Journal JArchSci  
  Volume 148 Issue Pages 105654  
  Keywords  
  Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.  
  Address December 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; MACO; 600.167 Approved no  
  Call Number Admin @ si @ BOL2022 Serial 3753  
Permanent link to this record
 

 
Author (down) Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Aftab Alam; Rosie Campbell; Petrus J Gerrits; Jonas Gregorio de Souza; Afifa Khan; Maria Suarez Moreno; Jack Tomaney; Rebecca C Roberts; Cameron A Petrie edit  url
doi  openurl
  Title Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan Type Journal Article
  Year 2023 Publication Scientific Reports Abbreviated Journal ScR  
  Volume 13 Issue Pages 11257  
  Keywords  
  Abstract This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ BOL2023 Serial 3976  
Permanent link to this record
 

 
Author (down) I. Sorodoc; S. Pezzelle; A. Herbelot; Mariella Dimiccoli; R. Bernardi edit  url
doi  openurl
  Title Learning quantification from images: A structured neural architecture Type Journal Article
  Year 2018 Publication Natural Language Engineering Abbreviated Journal NLE  
  Volume 24 Issue 3 Pages 363-392  
  Keywords  
  Abstract Major advances have recently been made in merging language and vision representations. Most tasks considered so far have confined themselves to the processing of objects and lexicalised relations amongst objects (content words). We know, however, that humans (even pre-school children) can abstract over raw multimodal data to perform certain types of higher level reasoning, expressed in natural language by function words. A case in point is given by their ability to learn quantifiers, i.e. expressions like few, some and all. From formal semantics and cognitive linguistics, we know that quantifiers are relations over sets which, as a simplification, we can see as proportions. For instance, in most fish are red, most encodes the proportion of fish which are red fish. In this paper, we study how well current neural network strategies model such relations. We propose a task where, given an image and a query expressed by an object–property pair, the system must return a quantifier expressing which proportions of the queried object have the queried property. Our contributions are twofold. First, we show that the best performance on this task involves coupling state-of-the-art attention mechanisms with a network architecture mirroring the logical structure assigned to quantifiers by classic linguistic formalisation. Second, we introduce a new balanced dataset of image scenarios associated with quantification queries, which we hope will foster further research in this area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ SPH2018 Serial 3021  
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Victor Ponce; Sergio Escalera; Xavier Baro; Alicia Morales-Reyes; Jose Martinez-Carranza edit   pdf
doi  openurl
  Title Evolving weighting schemes for the Bag of Visual Words Type Journal Article
  Year 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications  
  Volume 28 Issue 5 Pages 925–939  
  Keywords Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision  
  Abstract The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Springer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MV; no menciona Approved no  
  Call Number Admin @ si @ EPE2017 Serial 2743  
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier edit   pdf
url  doi
openurl 
  Title Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 2 Pages 894-911  
  Keywords  
  Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.  
  Address 1 April-June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ EKS2022 Serial 3406  
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera edit   pdf
url  openurl
  Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
  Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal  
  Volume 40 Issue 6 Pages 1-14  
  Keywords  
  Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ BME2021c Serial 3643  
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera edit  doi
openurl 
  Title Neural Cloth Simulation Type Journal Article
  Year 2022 Publication ACM Transactions on Graphics Abbreviated Journal ACMTGraph  
  Volume 41 Issue 6 Pages 1-14  
  Keywords  
  Abstract We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.



ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
 
  Address Dec 2022  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ BME2022b Serial 3779  
Permanent link to this record
 

 
Author (down) Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund edit  url
doi  openurl
  Title Back-dropout Transfer Learning for Action Recognition Type Journal Article
  Year 2018 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 12 Issue 4 Pages 484-491  
  Keywords Learning (artificial intelligence); Pattern Recognition  
  Abstract Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKM2018 Serial 3071  
Permanent link to this record
 

 
Author (down) Henry Velesaca; Patricia Suarez; Raul Mira; Angel Sappa edit   pdf
url  openurl
  Title Computer Vision based Food Grain Classification: a Comprehensive Survey Type Journal Article
  Year 2021 Publication Computers and Electronics in Agriculture Abbreviated Journal CEA  
  Volume 187 Issue Pages 106287  
  Keywords  
  Abstract This manuscript presents a comprehensive survey on recent computer vision based food grain classification techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches proposed in the literature are analyzed according to the processing stages considered in the classification pipeline, making it easier to identify common techniques and comparisons. Additionally, the type of images considered by each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions highlighting future needs and challenges are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ VSM2021 Serial 3576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: