
Exploiting Multiple Cues in Motion Segmentation based

on Background Subtraction

Ivan Huertaa, Ariel Amatob, Xavier Rocab, Jordi Gonzàlezb
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Abstract

This paper presents a novel algorithm for mobile-object segmentation
from static background scenes, which is both robust and accurate under most
of the common problems found in motion segmentation. In our first contri-
bution, a case analysis of motion segmentation errors is presented taking into
account the inaccuracies associated with different cues, namely colour, edge
and intensity. Our second contribution is an hybrid architecture which copes
with the main issues observed in the case analysis by fusing the knowledge
from the aforementioned three cues and a temporal difference algorithm. On
one hand, we enhance the colour and edge models to solve not only global and
local illumination changes (i.e. shadows and highlights) but also the camou-
flage in intensity. In addition, local information is also exploited to solve the
camouflage in chroma. On the other hand, the intensity cue is applied when
colour and edge cues are not available because their values are beyond the dy-
namic range. Additionally, temporal difference scheme is included to segment
motion where those three cues can not be reliably computed, for example in
those background regions not visible during the training period. Lastly, our
approach is extended for handling ghost detection. The proposed method
obtains very accurate and robust motion segmentation results in multiple
indoor and outdoor scenarios, while outperforming the most-referred state-
of-art approaches.

Keywords:
Motion segmentation, shadow suppression, colour segmentation, edge

Preprint submitted to Neurocomputing October 13, 2011



segmentation, ghost detection, background subtraction

1. Introduction

During the last decades, important research efforts in Computer Vision
have been focused on developing theories, methods and systems for mod-
elling and understanding motion perception. Motion information is the basis
for a wide range of applications such as smart surveillance systems, control
applications, advanced user interfaces, and motion basis diagnosis, among
others [1]. A particular domain-of-interest can be found in the semantic
evaluation of people behaviour in image sequences, in which different tasks
are required, such as acquisition, detection, tracking, action recognition and
behaviour reasoning [2], but still the basis for this high-level interpretation
relies on when and where motion has been detected in an image.

Detecting moving agents is a fundamental and difficult problem because
an accurate segmentation enhances the performance of the subsequent steps
of human behaviour understanding [3] . But reliable (and fast) motion seg-
mentation is hard due to the intrinsic nature of typical scenarios, where global
and local illumination changes (i.e. shadows and highlights), camouflage and
repetitive moving regions (like waving flags or tree leaves) should be com-
monly addressed, as well as other physical changes such as bootstrapping
and ghosts [4]. Most used techniques for handling these issues are back-
ground subtraction, frame differencing, a combination of both, or optical
flow [1, 5, 6, 7]. Even though many algorithms have been proposed in the
literature, the detection of moving objects in complex environments is still
far from being completely solved.

In this paper, a novel approach which outperforms most-known techniques
used for motion segmentation is proposed. The main contributions of this
paper are: (i) a novel, deep theoretical case analysis is presented for the cues
most used in the literature for motion segmentation; we analyse when and
why inaccuracies and errors appear due to these cues. (ii) A new hybrid
architecture is presented based on such an analysis; we exploit the benefits
of fusing colour, edge, and intensity cues together with temporal difference
[8, 9]. (iii) New colour and edge models are proposed; in particular a novel
chromatic-invariant cone model for colour segmentation, and an invariant
gradient model which fuses magnitude and orientation for edge segmentation
(thus avoiding false edges due to intense global illumination changes).
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Regarding with the performance of our method, it can handle (i) non-
physical changes (such as global or local illumination changes and camou-
flages), (ii) physical changes (such as bootstrapping and ghosts), and (iii)
sensor dynamic range problems. In particular, Ghost cases are successfully
detected on-the-fly without increasing the computational cost. Furthermore,
our approach can detect dark camouflage cases which can be distinguished
from shadows and changes of global illumination. Interestingly, real-time per-
formance can be fulfilled because the method is highly parallelizable, mainly
due to the pixel-wise nature of the proposed components.

This paper is organized as follows: next section presents a comprehensive
literature review in motion segmentation and compares the main contribu-
tions of our approach w.r.t. the state of the art. Section 3 presents an
analysis of the cues typically applied in motion segmentation, emphasizing
those cases in which such cues can not be reliably applied. This theoretical
evaluation leads to our segmentation approach which is explained in section
4: we explain how intensity, colour, edge cues and temporal difference are
used together for addressing most of the identified anomaly cases. The ex-
perimental results described in section 5 demonstrates that the performance
of the resulting method applied to both indoor and outdoor sequences of
several, most popular databases outperforms most well-known segmentation
approaches. Lastly, section 6 presents the main lines of future research based
on the results obtained.

2. State of the Art

Background subtraction is the most commonly used technique for motion
segmentation in static scenes [10, 11, 12, 13]. It attempts to detect moving
regions in an image by subtracting the current image with a reference back-
ground model in a pixel-by-pixel manner. The background representation is
created by averaging several images over time during an initialization period.
Subsequently, pixels are classified as foreground if the difference between the
input image and the background model is above a learnt threshold, whose
calculation depends on the specific approach. Then, numerous approaches
update over time the background model with new images to adapt it to
dynamic scene changes.

There are a large number of different algorithms using this background
subtraction scheme. Nonetheless, they differ in (i) the type of cues or struc-
tures employed to build the background representation; (ii) the procedure
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used for detecting the foreground region; and (iii) the updating criteria of
the background model.

A naive version of the background subtraction scheme is employed by
Heikkila and Silven [14], which classifies an input pixel as foreground if its
value is over a predefined threshold when subtracted from the background
model. This approach updates the background model in order to guarantee
reliable motion detection using a first order recursive filter. However, this
method is extremely sensitive to changes of dynamic scenes such as gradual
illumination variation or physical changes such as ghosts (i.e. when an object
already represented in the background model begins to move).

In order to overcome these difficulties, statistical approaches have been
applied [5]. These approaches make use of statistical properties of each pixel
(or regions), which are updated dynamically during all the process in order to
construct the background model. It has been demonstrated that statistical
approaches are more efficient when dealing with noise, illumination changes,
shadows, etc.

Haritaoglu et al. in W 4 [15] apply background subtraction by computing
for each pixel in the background model, during a training period, three values:
its minimum and maximum intensity values, and the maximum intensity
difference between consecutive frames. Background model pixels are updated
using pixel-based and object-based updating conditions to be adaptive to
illumination and physical changes in the scene. However, this approach is
rather sensitive to shadows and lighting changes, since the only cue used is
intensity.

Alternatively, Wren et al. in Pfinder [16] proposed a modelling frame-
work in which each pixel colour value (in YUV space) is represented with a
single Gaussian. Then, model parameters are recursively updated. However,
a single Gaussian model cannot handle multiple backgrounds, such as waving
trees. Stauffer and Grimson [17, 18] addressed this issue by using a Mixture
of Gaussians (MoG) to build a background colour model for every pixel. An
improvement of the MoG can be found in Zivkovic et al. [19, 20], where the
parameters of a MoG model are constantly updated, while selecting simul-
taneously the appropriate number of components for each pixel.

Elgammal et al. [21] use a non-parametric Kernel Density Estimation
(KDE) to model the background. Their representation samples an intensity
values for each pixel to estimate the probability of newly observed intensity
values. The background model is also updated continuously to be adaptive
to background changes. In addition to colour-based information, their sys-
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tem incorporates region-based scene knowledge for matching nearby pixel
locations. This approach can successfully handle the problem of small back-
ground motion such as tree branches. Mittal et al. [22] use adaptive KDE
for modelling background in motion, and implement optical flow to detect
moving regions. In this way, their approach is able to manage complex back-
ground, although the computational cost is severe. Chen et al. [23] combine
pixel- and block-based approaches to model complex background; however
the method is very sensitive to camouflages and shadows.

Cheng et al. in [24] proposed an on-line learning method which is able to
work in real time and can be implemented in GPU which also gives similar
results managing complex background. In [25] Barnich and Droogenbroeck
also present a really fast method that can cope with background in motion
and bootstrapping problems. The method adopts the idea of sampling the
spatial neighbourhood for refining the per-pixel estimation. The model up-
dating relies on a random process that substitutes old pixel values with new
ones. However, it can not cope with camouflages and shadows. Another solu-
tion to bootstrapping problem is presented by colombari et al. in [26], where
a patch-based technique exploits both spatial and temporal consistency of
the static background.

Li et al. [27] and Sheikh et al. [28] use Bayesian networks to cope with
dynamic backgrounds. Li et al. uses a Bayesian framework that incorporates
spectral, spatial, and temporal features to characterize background appear-
ance. Sheik et al. apply non-parametric density estimation to model the
background as a single distribution, thus handling multimodal spatial uncer-
tainties. Furthermore, they also use temporal information. The use of layers
for image decomposition based on the neighbouring pixels is presented in [29]
to handle dynamic backgrounds as well. Maddalena et al. [30] use neural
networks to overcome the same problem. An improvement of it using self
organizing maps can be found by Lopez-Rubio et al. [31] which can adapt
its colour similarity measure to the characteristics of the input video. Ma-
hadevan et al. in [32] uses a combination of the discriminant center-surround
saliency framework with the modelling power of dynamic textures to solve
problems with highly dynamic backgrounds and a moving camera. However,
this method is not designed for high accurate segmentation but rather for
detection.

Toyama et al. [4] in Wallflower use a three-component system to handle
many canonical anomalies for background updating. Their work processes
input images at various spatial scales, namely pixel, region, and frame levels.
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Reasonably good foreground detection can be achieved when moving objects
or strong illumination changes (for example when turning on/off the light in
an indoor scene) are present. However, it fails when modelling small motion
in the background or local illumination variations.

The aforementioned motion detection approaches generally obtain good
segmentation in indoor and outdoor scenarios so some of them have been
used in real-time surveillance applications for years. Nevertheless, most of
them are susceptible to both local (such as shadows and highlights) and
global illumination changes (like at dawn or dusk, and when the sun is sud-
denly covered by clouds). Towards this end, another approaches have been
proposed [33], which differ in the type of cue considered.

Horprasert et al. [34] present a statistical background colour model which
uses colour chrominance and brightness distortion in RGB space. Using these
distortions, their approach classifies the current pixel as background (shaded,
shadow or highlight) or moving foreground. An enhancement of this work was
presented by Kim et al. [35] who built a cylinder region in RGB colour space
to detect foreground objects. They also quantized background values for each
pixel into codebooks which represent a compressed form of the background
model for long image sequences. Nevertheless, anomalies in the dynamic
range prevent to obtain accurate segmentation.

To avoid shadows, other spaces are used such as that presented in Cuc-
chiara et al. [36]. They use the HSV space colour model to avoid local illu-
mination problems. An extension ispresented in [37] where a more complex
model is used to detect shadows and ghosts, thereby classifying the pixels as
moving object, uncovered background, background, ghost, or shadow.

So colour has been demonstrated to be a suitable cue to handle problems
with local and global illumination changes. Nevertheless, there are a lot of
problems when colour is used, such as the change of illuminant, the non-
linear sensor response, etc. Two main approaches are employed in order to
deal with these two problems, namely colour constancy and colour invariant
normalisations.

Based on colour constancy methods, some approaches make use of intrin-
sic images to remove shadows while coping with illuminant variation. Intrin-
sic image decomposition separates one image into two: one which records
variation in reflectance and another which represents the variation in the
illumination across the image. Given that, Finlayson et al. [38] compute an
invariant image which depends only on the reflectance. Hence, their approach
is invariant to the changes in illuminant colour and intensity. Nonetheless,
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part of the colour information is lost when removing the effect of the scene
illumination at each pixel in the image, thereby increasing the problem of
camouflages. Other approaches such as [39] use the bluish effect from the il-
luminant scene plus a spatio-temporal ratio test and a dichromatic reflection
model for shadow removal.

Weiss [40] also extract intrinsic images using edge cues instead of colour
to obtain the reflectance image. This process requires several frames to de-
termine the reflectance edges of the scene. However, the reflectance image
also contains scene illuminations because this approach requires prominent
changes in the scene, specifically for the position of shadows.

There are other approaches which use different techniques to eliminate
local illuminations (e.g. shadows), such as normalised cross correlation. How-
ever, these techniques are not usually applied because of their problems with
camouflages.

Statistical learning-based approaches have been developed to learn and
remove cast shadows [41, 42, 43]. For example, in [42] a nonparametric
framework to model surface behaviour when shadows are cast on them is
presented. Physical properties of light sources and surfaces are employed in
order to identify a direction in RGB space at which background surface values
under cast shadows are found. However, these approaches are particularly
affected by the training phase.

Edge cues are also used for motion segmentation. Jabri et al. [44] use a
statistical background modelling which combines colour (in RGB space) with
edges. Subsequently, background subtraction is performed by subtracting
the colour and edge channels separately using confidence maps, and then
combining the results to get the foreground pixels. McKenna et al. [45]
also use colour and edge information to model the background. In this case,
motion segmentation consists of three separate background models which
are combined to obtain the foreground pixels. Javed et al. [46] present a
method that uses multiple cues, based on colour and gradient information.
The approach tries to handle different difficulties by using three distinct
levels: pixel, region and frame level, inspired from [4]. Nevertheless, ghosts
can not be eliminated if the background contains a high number of edges,
and shadows can not be removed either.

Alternative approaches use textures for shadow removal. Leone et al. [47]
use a descriptor based on the coefficients of Gabor decomposition and photo-
metric properties. Heikkilä et al. [48] apply a modified Local Binary Pattern
(LBP) operator. In Yao et al. [49], textures are computed using the LBP
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combined with a RGB colour model. However, texture-based approaches
usually fails in handling camouflages and local illumination changes. In [50]
Amato et al. present a method which introduces two discriminative features
based on angular and modular patterns which are formed by similarity mea-
surement between two sets of RGB colour vectors. However, in this work
issues as camouflage and ghost are not addressed.

Approaches based on temporal difference extract moving regions by mak-
ing use of a pixel-by-pixel difference between consecutive frames [5]. This
methodology is very adaptive to dynamic scene changes but it can not gen-
erally extract the entire pixels of moving objects, thereby causing the so-
called foreground aperture problem. Temporal differencing cannot cope with
sleeping objects, so additional techniques have been proposed for detecting
motionless foreground objects. For example, Shen [51] is an example of hy-
brid algorithm which combines RGB, HSI colour spaces, fuzzy information
and temporal difference.

Lastly, Optical Flow (OF) has been used for motion segmentation as well:
flow vectors of moving objects are computed over time to detect changing
regions [22]. OF techniques are able to segment moving objects in video
sequences even from moving cameras. The main drawback is that these
methods are computationally highly expensive and very sensitive to noise.
Therefore, most of them cannot be executed in real-time without specialized
hardware [5].

2.1. Main contributions of this paper

Once the advantages and drawbacks of the most referred approaches have
been detailed, we next detail the main contributions of our approach w.r.t.
the state of the art:

• A novel theoretical case analysis of motion segmentation problems is
presented, where the performance of each cue used in the literature for
segmentation (intensity, colour, and edges) is exhaustively evaluated,
showing the advantages of every cue and stating when each cue can or
cannot be applied. To the best of our knowledge, current state-of-the-
art considers chromatic spaces only, so literature still do not address
most of the problems identified in our theoretical case analysis.

• Our hybrid algorithm uses intensity, colour, edges cues and temporal
difference, because each cue solves a particular problem identified in
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the case analysis. Cue models have been improved over the existing
ones and moreover their combination is a step forward in current state-
of-the-art, since:

– Our proposed chromatic-invariant cone model achieves better seg-
mentation results than the commonly-used cylinder model [34, 35].
The invariant gradient model combines magnitudes and orienta-
tions for edge segmentation while avoiding false edges due to in-
tense global illumination changes [45, 44].

– Some techniques are not be able to work with global and local
illumination changes [17, 15, 16]. Using chromaticity only, the
assessment of whether a foreground region is a shadow, a change
of global illumination or a dark camouflage is not possible [34,
35]. Approaches using HSV [36, 51] also exhibit this problem.
Another approaches fuse colour and edges cues without addressing
shadow removal [44, 46]. We cope with all these problems without
a significant increase of computational cost.

– Using the combination of cues, we are able to address the ghost
problem on-the-fly, instead of requiring a predefined time period
or not handling this problem [34, 35, 21, 4, 45, 44].

Summarizing, the main contributions are (i) the case analysis of segmen-
tation problems, and (ii) the architecture derived from such analysis; (iii)
improved versions of the cue models typically used for segmentation, while
detailing (iv) how these cues are combined, when are these used, and why
each cue solves each anomaly case. The algorithms presented in this paper
for each cue can be enhanced independently or rather substituted by better
ones without modifying the architecture itself.

3. A Case Analysis of motion segmentation problems

Colour Information obtained from a recording camera is based on the sen-
sor response sc —for Lambertain or perfect matte surfaces— and depends on
three components: the illuminant spectral power distribution L (λ), the ob-
ject reflectance distribution R (λ), and the sensor sensitivity Sc (λ), following
the equation sc =

∫
λ
L (λ)R (λ)Sc (λ) dλ, where λ denotes the wavelength,

and c ∈ {R,G,B} the colour channel. Therefore, changes in the illumina-
tion —in both brightness and chrominance components— modify the sensor
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Figure 1: Experiments on a Macbeth board to test the sensor dynamic range. Background
pixels are drawn in green. The red line denotes the modelled chrominance line, whereas
the blue one corresponds to the correct one. First image corresponds to a blue checker
which is not observed with enough light during the modelling process. In second image
case, the chrominance of a yellow checker is modelled while some of the channels are
saturated. Consequently, there are noticeable deviations between the inferred and correct
chrominance in both cases.

response. The object reflectance may considerably depend on the both the
incident-light angle and the viewing angle. It also may present strong spec-
ular components with no information about the object colour. Finally, it
depends on the sensor sensitivity.

In addition, the sensor dynamic range must be taken into account. This
is defined as the ratio between the maximum possible signal versus the noise
signal in dark. Thus, very low or very high brightness distort the observed
response. Consequently, these effects should be considered as a source of
potential errors during both background modelling and image segmentation.

The measurement of the low intensity pixels are affected by quantization
noise which it make unstable region to describe their chromaticity as well
high intensity pixels are affected by the saturation of the sensor.

A series of experiments with a Macbeth board were designed to explore
these phenomena, see Fig. 1. Experiments show as a wrong background
model may be built depending on the illumination conditions during the
training step of the background model (red line in Fig. 1). A Macbeth board
was first illuminated with a constant light source. Then, the diaphragm was
modified in a series of time steps, thereby changing the received luminance.
The background was modelled during 50 frames. Then, 650 more frames
were acquired while changing the aperture.
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Figure 2: Labelling: Beyond (BSDR) or Inside (ISDR) Sensor Dynamic Range; Shadow
(S), Highlight (H), Background using Chrominance (BgC), Brightness (BB), Edges (BgE)
or Intensity cues (BgI); Foreground using Chrominance (FgC), Edges (FgE) or Intensity
(FgI), Dark Foreground (DF) and Light Foreground (LF); Camouflage using Chrominance
(CaC), Edges (CaE), Brightness (CaB) or Intensity (CaI), Dark Camouflage (DC), Light
Camouflage (LC), Sharp Shadows (SS), Sharp Highlight (SH), Intense Shadows (IS), In-
tense Highlight (IH), Change of Illuminant (CI), Gleaming Surface (GS). Cues: ’x’ it
cannot be used; ’-’ it is no relevant. See text for details.

Fig. 2 shows a case analysis of the potential segmentation problems using
the combination of three background models: colour, edges and intensity,
and the pixel value within the sensor dynamic range.

Edges from very dark pixels with not enough brightness can be hidden
since they are beyond sensor dynamic range. And a similar problem appears
with very light pixels. Consequently, cases beyond sensor dynamic range
should be addressed using an intensity model, because both colour and edge
models are not suitable, thereby classifying the pixels as foreground (case
FgI) or background (case BgI) depending on their intensity.

There could be pixels whose Bg. colour model can be computed, although
the current image pixels are beyond the sensor dynamic range. Here, neither
chrominance nor edge cues can be used. In such a case, the brightness com-
ponent of the colour model can be used as a suitable cue, thereby classifying
them as dark/light foreground (case DF/LF) or background (case BB).

Changes in illumination, despite of being local or global, sudden or grad-
ual (such as shadows or highlights) are all supposed to entail just variations
in the observed brightness, but not in the chrominance. Thus, a pixel can
be considered as foreground using colour and edge models in the following
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situations: (i) a pixel is considered foreground using the colour model when
it differs in chrominance with the model (case FgC); (ii) using the edge model
when it shows a gradient change respect to the model (case FgE). Otherwise
the pixel is classified as background (cases BgE, shadow (S) or highlight (H)).

Foreground pixels whose lower and higher brightness cannot be distin-
guished from shadows and highlights, are considered dark/light camouflage
(DC/LC, respectively).

Hence, fusing the three models may overcome some of the segmentation
problems such as changes in illumination conditions, camouflage in intensity
and camouflage in chroma, as long as the illuminant has a plain spectral
power distribution.

However, there are other anomalies that cannot be disambiguated with
the colour, edges and intensity cues, which are not taken into account in this
paper. Firstly, foreground pixels with the same chrominance, brightness,
and gradient as the background model can not be segmented, so such pixels
are considered camouflaged (CaC, CaB, and CaE respectively). Secondly,
intense shadows and highlights (IS/IH) can be classified as DF or LF, and
shadows and highlights (S/H) over zones beyond the sensor dynamic range
can be considered as foreground (FgI). Thirdly, edges of sharp shadows and
highlights (SS, SH) can be segmented (FgE). Finally, local and global changes
in the illuminant chrominance (CI), as well as gleaming surfaces (GS) may
cause false-positive segmentations. So there is still a lot of ground to cover.

4. Multicue Image Segmentation

The segmentation task is next presented following a statistical background-
subtraction approach based on the case analysis as discussed before. Our ap-
proach addresses the aforementioned cases by combining background models
built on three different cues, and a temporal difference technique.

Firstly, background models are built and an automatic threshold selec-
tion is computed for them. Next, image segmentation using these models is
presented and finally, an approach which combines these models is detailed.

4.1. Background Modelling

The approach combines three background models and a temporal differ-
ence algorithm. A sketch of the Background-Modelling Module is shown in
Fig 3. A Background Colour Model (BCM) consists of a chromatic invariant
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Figure 3: Background modelling approach. See text for details.

cone representation which separates the chrominance and brightness com-
ponents; a Background Edge Model (BEM) makes use of invariant gradient
magnitudes and orientations; a Background Intensity Model (BIM) computes
the mean and standard deviation for each pixel intensity; and a Temporal
Differencing (TD) algorithm evaluates the changes between three consecutive
frames. We next detail the procedure.

Background is modelled on a pixel-wise basis [17, 15, 45], which provides
the necessary representation accuracy. Training is carried out by using a

window of T frames. A motion filter
∣∣∣Ica,t − Ĩca

∣∣∣ < max (2σc
a, ϵ) is used to

remove moving pixels during a training period of T frames, where Ica,t and

Ĩca are the current image value and median value of pixel ‘a‘ for each channel
c ∈ {R,G,B} respectively, σc

a is the corresponding standard deviation, and
ϵ is a small positive quantity. This process is iterated until convergence.

Then, those pixels with a representative number of valid values in the
training period are taken into account for building the background model.
Values of colour, edge and intensity cues are computed for these pixels. On
one hand, pixels whose RGB values are within the dynamic range of the
sensor are used to build BCM and BEM. On the other hand, pixels whose
value is beyond the sensor dynamic range are used to build BIM. Those pixels
considered in motion are not used to build any background model and will
be evaluated using the TD algorithm.

Background Colour Model (BCM)

The BCM is computed according to the chromatic-invariant cone rep-
resentation shown in Fig. 4: first, the RGB mean µa =

(
µR
a , µ

G
a , µ

B
a

)
and
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Figure 4: Colour-model representation. µa represents the expected RGB colour value for
a pixel a, while Ia is the current pixel value. The line 0µa shows the expected chromatic
line —all colours along this line have the same chrominance, but different brightness. αa

and βa give the current brightness and chrominance angle distortion, respectively.

the standard deviation σa =
(
σR
a , σ

G
a , σ

B
a

)
of each image pixel a during the

training period t = [1 : T1] is computed.
Once each RGB component is normalised by their respective standard

deviation σc
a, two distortion measures are established during the training pe-

riod: the brightness αa,t and the chrominance angle βa,t distortions. Bright-
ness distortion is computed by minimising the distance between the current
pixel value Ia,t and the chromatic line 0µa. The angle between 0µa and 0Ia

is, in fact, the chromatic angle distortion. Thus, brightness and chromatic
angle distortions are given by:

αa,t =

IRa,tµ
R
a

(σR
a )2

+
IGa,tµ

G
a

(σG
a )2

+
IBa,tµ

B
a

(σB
a )2(

µR
a

σR
a

)2
+
(

µG
a

σG
a

)2
+
(

µB
a

σB
a

)2 , (1)

βa,t = arcsin

√ ∑
c=R,G,B

(
Ica,t − αa,tµ

c
a

σc
a

)2

√ ∑
c=R,G,B

(
Ica,t
σc
a

)2
. (2)

14



Finally, the Root Mean Square over time of both distortions for each pixel
is computed as:

ᾱa = RMS (αa,t − 1) =

√√√√ 1

T1

T1∑
t=0

(αa,t − 1)2 , (3)

β̄a = RMS (βa,t) =

√√√√ 1

T1

T1∑
t=0

(βa,t)
2 , (4)

where 1 is subtracted to αa,t so that the brightness distortion becomes zero-
mean: positive values identify brighter pixels, whereas negative values corre-
spond to darker pixels. These values are used as normalising factors so that
a single threshold can be set for the whole image. This 4-tuple BCM =<
µa,σa, ᾱa, β̄a > constitute the finl pixel colour background model.

Background Edge Model (BEM)

The BEM is built as follows: first the Sobel edge operator is applied to
each colour channel in horizontal and vertical directions. This yields toboth
horizontal Gc

x,a,t = Sx ∗ Ica,t and vertical Gc
y,a,t = Sy ∗ Ica,t gradient image

for each frame during the training period t = [1 : T ], where c ∈ {R,G,B}
denotes the colour channel.

Then, each background pixel gradient is represented using the gradient
mean µGx,a = (µR

Gx,a, µ
G
Gx,a, µ

B
Gx,a) and µGy,a = (µR

Gy,a, µ
G
Gy,a, µ

B
Gy,a), and gradi-

ent standard deviation σGx,a = (σR
Gx,a, σ

G
Gx,a, σ

B
Gx,a) and σGy,a = (σR

Gy,a, σ
G
Gy,a, σ

B
Gy,a)

computed from all the training frames for each channel.
Then, the magnitudes of the gradient mean µG and standard deviation

σG are computed to build BEM. The orientation of the gradient (µθ and σθ)
is also computed to avoid the false edges created by illumination changes.

µc
G,a =

√
(µc

Gx,a)
2 + (µc

Gy,a)
2; σc

G,a =
√

(σc
Gx,a)

2 + (σc
Gy,a)

2, (5)

µc
θ,a = arctan

(
µc
Gy,a

µc
Gx,a

)
; σc

θ,a = arctan
(

σc
Gy,a

σc
Gx,a

)
, (6)

where c ∈ {R,G,B} denotes the colour channel. Thus, BEM =< µc
G,a, σ

c
G,a,

µc
θ,a, σ

c
θ,a >.

15



Background Intensity Model (BIM)

Finally, the BIM consist of a 2-tuple given by the mean pixel intensity, µI
a

and its standard deviation σI
a. BIM is computed for those motionless pixels

which have a representative number of values beyond sensor dynamic range.
So, BIM =< µI

a, σ
I
a >.

4.2. Parameters Analysis

The thresholds employed for the segmentation task are automatically
computed for each model based on statistical inference from the experimental
results, as shown next.

Background Colour Model (BCM)

Building BCM is completed by the automatic threshold computation de-
scribed in Horprasert et al. [34]. First, the normalised distortions are calcu-
lated for each pixel:

ᾰa,t =
αa,t

ᾱa

; β̆a,t =
βa,t

β̄a

. (7)

This process is repeated during a temporal window of T2 frames to avoid
errors due to an insufficient number of samples. Subsequently, the histograms
of both accumulated measures ᾰa,t and β̆a,t are computed by taking into
account all pixel distortions during T2. The parameters involved in this step
are: (i) the chrominance angle distortion threshold, τβ, controls the limit of
the chroma change; (ii) A lower, τα1, and a higher, τα2, brightness thresholds
are needed to define the brightness range, and will be used later to detect
shadows and highlights; and (iii) a dark, τD, and a light, τL, thresholds are
used for detecting those pixels beyond the sensor dynamic range ( τD stands
for high intensity values and τL for those ones with low intensity).

From the experiments of different sequences, a stable detection has been

achieved using the following range of values: τβ = κβ max
(
β̆a

)
, κβ = [1, 2],

τα1 is set at 0.99 of the ᾰa accumulated histogram, τα2 is set at (1− 0.99) of
the ᾰa accumulated histogram, τD = 4τα1, and τL = 4τα2.
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Background Edge Model (BEM)

The BEM uses three thresholds for edge pixel segmentation. A mini-
mum magnitude gradient threshold (τe) is learnt to decide if an edge can
be compared using its oriented gradient. An oriented gradient threshold
(τθ) and a maximum magnitude gradient threshold (τG) are learnt for pixel
segmentation. The thresholds are computed as τ ce,a = max(3σc

G,a, ϵ), τ
c
θ,a =

max(1.5σc
θ,a, σ

c
θ), and τ cG,a = max(5σc

G,a, σ
c
G), where these weighting factors

are selected empirically to achieve a stable detection in all tested sequences,
and σc

θ and σc
G are the average standard deviation computed over the entire

image.

Background Intensity Model (BIM)

The threshold used for pixel segmentation according to BIM is computed
as τ Ia = max

(
7σI

a, τm
)
, where τm is the lower bound of the sensor dynamic

range. Based on the experiments, the sensor dynamic range is determined
by τm, and τn, which are set to25 and 250, respectively.

Temporal Differencing (TD)

Finally, the threshold for temporal differencing segmentation is automat-
ically computed as follows: the histogram of accumulated measures (hσ)
is computed by taking into account the standard deviation of each pixel
vaue during the first three frames. The threshold is finally expressed as
τT = 2max ([0.98hσ] , σT ) where [0.98hσ] represents the maximum possible
value for avoiding outliers, and σT is the averaged standard deviation com-
puted over the entire image.

4.3. Image Segmentation

The segmentation task is done in two steps. The first step obtains the
foreground regions for each backgroud model, and the second step combines
the segmenttion results to cope withthe camouflage in chroma. A sketch of
the Image-Segmentation Module is shown in Fig 5.

Thus, in the first step four general cases are considered, and a different
model is applied in each one:

• BCM and BEM are applied to those pixels whose current values are
within the sensor dynamic range, and for which BCM and BEM can
be built;
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Figure 5: Image segmentation approach. As a result of applying background models to
the current frame, pixels are classified in the first step according to the sensor dynamic
range using BCM as foreground (FgC), background (BgC), shadow (S), and highlight (H);
according to the BEM as foreground (FgE) and background (BgE); using the BCM on
pixels beyond the sensor dynamic range, as dark foreground (DF), light foreground (LF),
and background (BB); according to the BIM as foreground (FgI) and background (BgI);
and according to the TD as foreground (FgTD) and background (BgTD). In a second
step, pixels inside the region enclosed by the foregrounds from the first step are combined
with a thresholded S and H mask in order to segment the foregrounds dark (DC) and light
(LC) camouflage.

• the brightness component of BCM is applied to segment those pixels
whose current values are beyond this range;

• BIM is applied to those pixels which do not have enough values within
the dynamic sensor range during the modelling process.

• and, TD is applied to those pixels whose background was not visible
during the training period and there is no background model available.

As a result, a segmentation map Ma,t is computed at each time. Thus,
pixels under the first condition are classified using BCM as background (BgC),
highlight (H), shadow (S), or foreground (FgC); and using BEM as back-
ground (BgE), foreground (FgE). Those pixels under the second condi-
tion are classified as background (BB), or dark foreground (DF) and light
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foreground (LF); those under the third one as background (BgI) or fore-
ground (FgI); and those under the last one as background (BgTD) or fore-
ground (FgTD). The process is summarized in Algorithm 1.

Edge segmentation is achieved based on the following premises:

• Illumination changes canmodify gradient magnitude but not gradient
orientation.

• Gradient orientation is not feasible where there are no edges.

• An edge can appear in any place where there were no edges before.

Assuming the first two premises, the oriented gradients can be compared
instead of the gradient magnitudes for those pixels which have a minimum
magnitude, in order to avoid false edges due to illumination changes:

Fθ =
(
(τ ce,a < V c

G,a,t) ∧ (τ ce,a < µc
G,a)
)
∧ (τ cθ,a < |V c

θ,a,t − µc
θ,a|), (8)

For those pixels satisfying the third premise, their gradient magnitudes
are compared instead of their orientation magnitudes:

FG =
(
¬
(
(τ ce,a < V c

G,a,t) ∧ (τ ce,a < µc
G,a)
))

∧ (τ cG,a < |V c
G,a,t − µc

G,a|), (9)

where the V c
θ,a,t and V c

G,a,t are the gradient orientation and magnitude for
every pixel in the current image, respectively.

4.4. Camouflage in Chroma (case DC/LC)

Despite of the act that edge segmentation is less sensitive to global il-
lumination changes than colour and intensity cue, problems like noise, fore-
ground aperture and camouflage prevent of an accurate segmentation of the
foreground objects. Therefore, handling dark and light camouflage problems
by using only edges is not feasible. In these cases, the brightness component
of the colour model should be used to solve the foreground aperture anomaly
by filling the foreground object.

Thus, in a second step, the region enclosed by the foreground pixels seg-
mented in the first step are combined with the thresholded shadows and high-
lights in order to solve the foreground camouflage in chroma while avoiding
the global and local illumination problems, thereby segmenting foreground
pixels as dark (DC) and light camouflage (LC).
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Algorithm 1 Image Segmentation.

• if BCM and BEM exist for the current pixel (’a’), then:

– if the current pixel (Ica,t) is within the sensor dynamic range (τm <
Ica,t < τn), then:

∗ if it has a different chrominance (β̆a,t > τβ) or different gra-
dient (Fθ ∨ FG), then foreground (FgC, FgE),

∗ else if it has lower brightness (ᾰa,t < τα1) and is outside
the enclosed foreground region (/∈ Region(Fg)), then shadow
(S),

∗ else if it has lower brightness and is inside the enclosed fore-
ground region (∈ Region(Fg)), then dark camouflage (DC),

∗ else if it has higher brightness (ᾰa,t > τα2) and is outside the
enclosed foreground region (/∈ Region(Fg)), then highlight
(H),

∗ else if it has higher brightness and is inside the enclosed fore-
ground region (∈ Region(Fg)), then light camouflage (LC),

∗ otherwise, original background (BgC, BgE).

– else

∗ if it has lower brightness (ᾰa,t < τD), then dark foreground
(DF),

∗ else if it has higher brightness (ᾰa,t > τL), then light fore-
ground (LF),

∗ otherwise, original background (BB).

• else if BIM exists, then:

– if it has lower or higher intensity (
∣∣IIa,t − µI

∣∣ > τ Ia ), then fore-
ground (FgI),

– otherwise, original background (BgI).

• otherwise, no background was visible during the training period and
temporal-differencing algorithm is applied

– if it has different intensity over three frames (σa,t > τT ), then
foreground (FgTD),

– otherwise, original background (BgTD).
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Figure 6: Colour and intensity segmentation, plus edge segmentation figures showing the
foreground pixels and S/H masks. DC/LC figure shows how dark and light camouflage
pixels are correctly segmented using a thresholded S/H combined with the foreground
region.

In this second step, shadows (S) and highlights (H) are also detected due
to DC/LC. Furthermore, to avoid noise generated from the edge cues, the
foreground edges obtained for the BEM are filtering using the region created
to cope with DC/LC problem.

An example of image segmentation where the camouflage in chroma is de-
tected can be seen in Fig. 6, where the agent near the crosswalk appears with
his jeans dark camouflaged with the road. The whole process is summarised
in Algorithm 1.

4.5. Ghost Detection

Segmented regions are evaluated to assess whether they contain a ghost
or a foreground region based on two premises:

• A ghost corresponds to an object which was included in the background
model.

• A ghost cannot be in motion. Therefore, the detected region does not
exhibit any motion.

Firstly, the boundary and the area of the detected region are compared
with the foreground edges and the region enclosed by these edges. Thus,
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Figure 7: The boundary and area of the detected region are compared with the foreground
edges and the region enclosed by these edges. This way the probability that a detected
region belongs to the background model or to the current image is computed. Then, the
boundary and the area of the detected region are also compared with the foreground agens
obtained from the temporal difference algorithm. Thus, the probability that the detected
region is in motion canbe obtained. Then, a region is considered a ghost based on the
probabilities obtained in the first step. Ghost is shown in magenta colour.

foreground segmentation is compared with the foreground edges obtained
from the edge cue to infer the probability that a detected region belongs
to the background model or to the current image. Then, the boundary
and the area of the detected region are also compared with the foreground
obtained from TD to infer the probability that the detected region is in
motion. Finally, a region is considered as a ghost based on this probability.

A sketch of the ghost detection approach can be seen in Fig. 7, where
the images show how the ghost detection works in a real sequence, images
are from the Hermes Outdoor Cam1 sequence.

5. Experimental Results

Our approach has been tested in several indoor and outdoor sequences
under uncontrolled environments, where multiple segmentation problems ap-
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Figure 8: Detection rate and false alarm rate results. First sequence is from HERMES
Database, second and third sequences are from CVC Database, and fourth sequence is
from CAVIAR Database. Our approach has been compared with different approaches
[15, 17, 34, 20, 35, 50, 25] using a manually segmented ground-truth. Our algorithm
obtains the best DR while maintaining the lowest FAR in all the sequences evaluated.

pear. Most of the sequences are taken from well-known public databases.
Successful segmentation results have been achieved for all of these sequences.

In order to evaluate the performance of the proposed approach in a quan-
titative way, ground-truth masks have been manually generated. The se-
quences segmented are Hermes Outdoor Cam1 from the HERMES database1

(1612 frames @15 fps, 1392 x 1040 PX), CVC Zebra1 sequence from CVC
database2 (1343 frames @20 fps, 720 x 576 PX), CVC Machine sequence
from CVC database (797 frames @29 fps, 640 x 480 PX), OneLeaveShopReen-
ter1cor from the CAVIAR database3 (389 frames @ 25 fps, 384 x 288 PX)
used in PETS 2004, and Hall Monitor from the NEMESIS database4 (300
frames, 352x240 PX). Furthermore, approaches from other authors [15, 17,
34, 35, 20, 52, 53, 50, 25] have been used for performance comparison.

Two standard metrics were considered to evaluate quantitatively the per-
formance of our proposed method. Detection Rate (DR) (also called True
Positive Rate) and False Alarm Rate (FAR) [33, 12]:

DR =
TP

TP + FN
; FAR =

FP

TP + FP
, (10)

1http://www.hermes-project.eu
2http://iselab.cvc.uab.es
3http://homepages.inf.ed.ac.uk/rbf/CAVIAR
4http://www.ics.forth.gr/cvrl/demos/NEMESIS/hall monitor.mpg

23



Figure 9: False negatives (top) and false positives (bottom) computed by comparing [15]
(in cyan), [17] (in red), [34] (in yellow), [35] (in magenta), [20] using the shadow detector
of [33] (in brown) and our approach (in blue) for the HERMES database. Our approach
obtains the best results. See text for details.

where DR is the ratio of correctly detected pixels to the ground truth data,
and FAR is the ratio of misclassified pixels to the total number of detected
pixels. TP, FP and FN correspond to the true positive, false positive, and
false negative pixels, respectively, when comparing the segmentation results
with the ground truth data.

Fig. 8 shows the results of the segmentation process using DR and FAR.
Results show that our algorithm obtains the best DR with the lowest FAR
in all the evaluated sequences. Figs. 9, 10 and 11 show how our approach
obtains the best results.

Fig. 9 shows the results to compare our approach with other approaches
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[15, 17, 34, 35, 20] on the Hermes Outdoor Cam1 sequence. Top graph of
Fig. 9 shows the number of false negative pixels segmented using the different
approaches, and the bottom one shows the number of false positives. Frames
790 to 1040 correspond to a gradual illumination change. Also, two cars
appear into the scene and several persons are crossing the road through a
crosswalk. Therefore, multiple motion segmentation difficulties appears in
this sequence: (i) global illumination changes —the scene get darker during
an instant—, (ii) local illumination changes —shadows due to agents and
vehicles—, (iii) camouflage —trousers of an agent when appearing in the
scene—, (iv) dark and light camouflage —dark camouflage of the trousers
of an when crossing the crosswalk and light camouflage of a white car with
the grey road—, and (v) ghost problem —a parked car suddenlybegins to
move—.

In the aforementioned sequence, W 4 (cyan line) segments the illumination
change as foreground, and also any shadows of cars and agents. The Stauffer
and Grimson algorithm (red line) cannot always cope with the illumination
change and also classifies the shadows as foreground. The Horprasert et al.
approach (yellow line) cannot tackle the light camouflage (white car with grey
road) and the Codebook technique (magenta line) is not able to differentiate
between the illumination change and camouflage in chroma. The Zivkovic
et al. approach (brown line) segments the illumination changes and all the
shadows like the Stauffer and Grimson approach but, since their technique
includes a shadow detection module [33], the system has also problems when
distinguishing illumination changes and camouflage in chroma. The results
show that our approach is robust to these problems and obtains the best
segmentation performance. An exemplar frame (number 864) is shown in
Fig. 10.(a), where light camouflage (a white car over a grey road), and soft
illumination changes are present.

Frames 1340 to 1460 in Fig. 9 correspond to a car parked which begins
to move (ghost). Our approach is the only one among all the evaluated
approaches that detects the ghost problem as soon as it occurs without need
of a background updating. This fact can be observed in the false positive
graph of Fig. 9. An exemplar frame (number 1411) showing the ghost
problem can be seen in Fig. 10.(b).

Fig. 10 shows significant frames comparing our approach with state-of-
the-art approaches. First row shows the original image, second row is the
ground truth, and from third to seventh the segmentation results are shown
for [15], [17], [34], [35] and [20], respectively. Last row shows the results
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S&G [17]

Hor [34]

Cod [35]

Ziv [20]

Own
(a) (b) (c) (d) (e)

Figure 10: Foreground segmentation comparison using a hand-segmented ground truth.
First and second column are from HERMES Database, third and fourth columns are from
CVC Database, and fifth column is from CAVIAR Database. First row is the original
image, second row is the ground truth, third row is the segmentation results from W 4

approach [15], fourth row from Stauffer and Grimson [17], fifth row from Horprasert et
al. [34], sixth row from Codebook approach [35], seventh row from Zivkovic et al. [20]
using a shadow detector [33], and eighth row from own approach. Segmentation results are
coloured in yellow for TP pixels, blue for FN pixels, and red for FP pixels. Our algorithm
obtains more number of TP along with less number of FP and FN.
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using our approach. In this figure it can be seen that our framework obtains
more TP and less FP and FN because its ability of tackling global and local
illumination problems, the problems beyond the dynamic range, the chroma
and intensity camouflage problem, and both bootstrapping and ghosts.

In the CVC Zebra1 sequence, vehicles and people appear, some agents
walking beside street lamps and trees. W 4 segments the shadows as fore-
ground and the updating process fails. The Stauffer and Grimson algorithm
can not cope with shadows and gradual illumination changes. The technique
of Horprasert et al. can not address light camouflage detection (white shirt
with light-grey road) and suffers the saturation case of the sky with gradual
illumination changes. Codebook cannot also cope with the light camouflage
problem and saturation simultaneously. The Zivkovic et al. approach fails in
the cases of illumination changes, camouflages and sleeping persons [4] (i.e.
foreground pixels are segmented as background because the updating sys-
tem wrongly incorporates foreground motionless objects to the background
model). Our algorithm is robust to all of these problems. Fig. 10.(c) presents
one frame where the light camouflage problem as described above is observed
(white shirt with grey road).

In the CVC Machine sequence an agent enters into the scene and inter-
acts with a vending machine, see Fig. 10.(d). This scene presents strong
illumination changes, and there is a saturation effect in the wall. Dark and
light camouflages are also present in this scene (agent in front of the wall).
Our algorithm can satisfactorily manage strong illumination changes, satu-
ration problems, and dark and light camouflage while avoiding the sleeping
persons effect. Zivkovic et al. can manage the strong illumination change us-
ing the updating system, but it fails when dealing with the sleeping persons
anomaly.

In the sequence OneLeaveShopReenter1cor, the two agents are correctly
segmented, see Fig. 10.(e). The colour distribution of the background is very
similar to that of the agents, thus including strong clutter. Furthermore,
several oriented lighting sources with different illuminants are present: these
lights dramatically affect an agent appearance depending on its position and
orientation (bluish effect at the right of the corridor, and reddish at the left).
A significant frame of this sequence can be seen in the Fig. 10.(e), where
dark camouflage and shadows are correctly corrected using our approach.

Fig. 11 shows frames from Hall Monitor sequence (top row) comparing
Wang et al. approach [52] (second row), Huang et al. approach [53] (third
row) and our approach (bottom row). The sequence exhibits challenging
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Figure 11: First row shows the original frames from the Hall Monitor sequence of the
NEMESIS dataset, second row shows the detection results of Wang et al. [52], and third
row shows the detection results from Huang et al. [53]. These images have been obtained
directly from [53]. Fourth row shows the segmentation results of our proposed approach
without applying any morphological operation.

aspects due to noise, shadows, and camouflage. Wang et al. can not correctly
handle noise and camouflage. Huang et al. is able to manage problems
with noise, but shadows can not be properly removed. Also, by using their
approach, regions corresponding to background are segmented as foreground,
such as the region around the legs. Instead, our approach can cope with all
the aforementioned issues.

Fig. 12 shows selected frames with the results of our approach in differ-
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Figure 12: Foreground detection results applying our approach to different datasets. Im-
ages from left to right: PETS2001, ATON, VS-PETS, UMIACS, MODLAB, PETS2006,
ETHZ, VSSN06, and CLEAR06 databases. All the agents and vehicles are correctly de-
tected showing robustness to global and local illumination problems, problems beyond the
dynamic range, and problems with camouflage in chroma.

ent datasets: PETS5, ATON6, VS-PETS7, UMIACS8, MODLAB 9, PETS
200610, ETHZ11, VSSN0612, and CLEAR0613 database.

5ftp://ftp.pets.rdg.ac.uk/pub/PETS2001
6http://cvrr.ucsd.edu/aton/
7ftp://ftp.pets.rdg.ac.uk/pub/VS-PETS/
8http://www.umiacs.umd.edu/users/
9http://www.na.icar.cnr.it/ maddalena.l/MODLab/MODseq.html

10http://pets2006.net/
11http://www.vision.ee.ethz.ch/datasets/
12http://imagelab.ing.unimore.it/vssn06/
13http://clear-evaluation.org/clear06/
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Lastly, some remarks on real-time requirements are next discussed. Signif-
icant speed improvements of our presented technique can be achieved because
of the pixel-based nature of the approach, making the algorithm paralleliz-
able. Since the current system is implemented in Matlab without a care-
ful code optimisation, subsequent implementations of bottleneck modules in
C++ should yield speed improvements over 10-100 times the computational
time of specific, most time-consuming functions. This would allow the system
to process the previously described sequences in near real time.

6. Conclusions

The approach described in this paper combines colour, intensity and edge
cues, and a temporal differencing technique in a collaborative architecture, in
which each module is devoted to a specific task. The proposed framework is
built upon a case analysis of motion segmentation problems associated with
the use of different cues. Consequently, this theoretical study has allowed
us to define when each cue can be used to address different segmentation
failures.

The background models built for each cue have been improved with re-
spect to the current state of the art. A novel chromatic invariant cone model
is proposed. Also, combining invariant gradient orientation with its magni-
tude allows our system to detect false edges due to intense global illumination
changes.

The proposed hybrid approach can cope with different colour problems as
dark and light foreground. Furthermore, we solve problems with the dynamic
range (in cases of saturation and lack of colour) using intensity cues. Our
approach also tackles camouflage in intensity and chroma, together with
global and local (shadows and highlights) illumination changes. In addition,
problems like bootstrapping and ghosts are handled.

Experiments on complex indoor and outdoor scenarios have yielded ro-
bust and accurate results, thereby demonstrating the ability of the system
to deal with unconstrained and dynamic scenes.

For future work, a proper updating process should be included in the ap-
proach to incorporate motionless objects to the background model. Further-
more, the use of a pixel-updating process can help to reduce false positives
obtained by using the intensity mask due to drastic illumination changes.
Furthermore, colour invariant normalisation or colour constancy techniques
can be used to improve the colour model. The edge model can be enhanced
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by avoiding false edges due to local intense illumination changes. Further,
edge linking or B-spline techniques can be used to avoid the partial loss of
foreground borders due to camouflage, thereby improving the edge mask. A
statistical-based decision approach that combines the use of multiples cues
could be useful to reduce some of the parameters described in this article.
Lastly, the discrimination between the agents and the local environments can
be enhanced by using new cues (such as texture) or tracking.
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[3] J. Varona, J. Gonzàlez, I. Rius, J. Villanueva, On importance of de-
tection for video surveillance applications, Optical Engineering 47 (8)
(2008) 1–8.

[4] K. Toyama, J.Krumm, B.Brumitt, B.Meyers, Wallflower: Principles
and practice of background maintenance, in: Proc. ICCV’99, Vol. 1,
Kerkyra, Greece, 1999, pp. 255–261.

[5] L. Wang, W. Hu, T. Tan, Recent developments in human motion anal-
ysis, Pattern Recognition 36 (3) (2003) 585–601.

[6] T. B. Moeslund, A. Hilton, V. Kruger, A survey of advances in vision-
based human motion capture and analysis, CVIU 104 (2006) 90–126.

[7] R. Radke, S.Andra, O. Al-Kofahi, B.Roysam, Image change detection
algorithms: a systematic survey, IEEE TIP 14 (3) (2005) 294–307.

31



[8] I. Huerta, D. Rowe, M. Mozerov, J. Gonzàlez, Improving background
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