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Abstract

This manuscript presents a comprehensive survey on recent computer vision

based food grain classification techniques. It includes state-of-the-art approaches

intended for different grain varieties. The approaches proposed in the literature

are analyzed according to the processing stages considered in the classification

pipeline, making it easier to identify common techniques and comparisons. Ad-

ditionally, the type of images considered by each approach (i.e., images from the:

visible, infrared, multispectral, hyperspectral bands) together with the strategy

used to generate ground truth data (i.e., real and synthetic images) are reviewed.

Finally, conclusions highlighting future needs and challenges are presented.

Keywords: computer vision approaches; quality inspection; food

grain identification; machine vision

1. Introduction

With the continued population growth, the food industry needs to keep

increasing production and improving the quality of products. Directly or in-

directly related to the increase in food production are the cereals, which are

at the base of the pyramid of the food industry, both for human and animal5
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consumption. According to the Food and Agriculture Organization’s last report

the world cereal production in 2020 has been 2765 million tonnes, 2% higher

than 20191. The report shows that the increase in production has kept the same

ratio during the last decade and it is expected to keep the same ratio in the near

future. Therefore, since it is difficult to increase the arable land, improvements10

are required in other processes in the production chain to increase productivity.

One of these improvements is related to the automation of the classification of

food grains, where a great effort has been devoted in recent years by proposing

new approaches to perform the classification in an automatic way. It should

be noticed that the food grain classification problem requires specific features15

according to the type of variety or problem. Some classes (seeds) have a large

inter-class variability making easier the solution while others show a very tiny

inter-class variability (e.g., classify between good grain and infected one). Actu-

ally, some of these challenging problems (small inter-class variability) requires

the usage of multispectral or hyperspectral technology. The contributions of20

this survey are as follows. Firstly, it presents a general pipeline that is used

to analyze the different stages generally involved in the classification process,

providing discussions for each one of them. Due to the lack of common bench-

marks for validation and the complexity of reproducing different approaches,

quantitative comparisons become difficult. Therefore, the survey presents an25

analysis of the most important proposals for each stage and provides quantita-

tive evaluations when possible. Finally, general conclusions are given pointing

out the current limitations and future trends from a more general viewpoint.

2. Literature Review

This section presents a deep review of works related to the different stages in-30

volved in the food grain classification problem. The reviewed works are grouped

following different criteria. Firstly, the main modules generally used in grain

1 http://www.fao.org/worldfoodsituation/csdb/en/
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Figure 1: Stages generally involved in a grain classification pipeline.

classification are considered—i.e., image acquisition, preprocessing, segmenta-

tion, and classification (see Fig. 1). It should be mentioned that although not

all these modules are present in the reviewed works, for instance in [1], [2] and35

[3] the authors propose a classification directly from the given images, this break

down is useful to cluster the approaches in the literature for further analysis and

comparisons. These four modules are reviewed in Sec. 2.1, Sec. 2.2, Sec. 2.3

and 2.4. Then, Sec. 2.5 clusters the approaches in the literature according to the

most common applications they are intended for. All these reviewed approaches40

are listed in Table 1 detailing their main features. Next, in Sec. 2.6, the works

are grouped according to the variety of classified grains (e.g., rice, corn, coffee

beans, etc.), insights on the particularity of each approach are given. Finally, a

review of state-of-the-art dataset generation strategies, including both real and

synthetic data, together with ground truth annotation are presented in Sec. 2.7.45

2.1. IMAGE ACQUISITION

The first stage of the general pipeline is related to image acquisition. Al-

though images from the visible spectrum (e.g., monochromatic images, color

images represented in the RGB color space) are generally considered as input

3



by the food grain classification systems, there are several works devoted to50

processing images from other spectral bands, for instance, infrared spectrum.

Furthermore, some approaches exploit other types of images (e.g., multispectral

or hyperspectral), covering not only the visible spectrum but also the ultraviolet

or infrared spectral bands. These kinds of images allow us to obtain informa-

tion useful for the classification process, which is not available in the classical55

single band domain. This section reviews state-of-the-art approaches on visi-

ble and infrared spectral bands together with multispectral and hyperspectral

based approaches, highlighting their limitations, advantages, and drawbacks.

2.1.1. Visible and infrared spectral bands

Most of the approaches in the literature are based on the use of a single60

spectral band. In general, visible spectrum cameras are considered due to the

low cost and availability of such devices. In addition to the visible spectrum,

there are few approaches relying on near infrared imagery due to the possibility

to better discriminate different objects in the given scene. In spite of that, the

visible spectrum is more widely used, for instance, [4] proposes a robust, low-65

cost, and efficient approach to evaluate wheat ear density in the visible spectrum.

Also focusing on the usage of low-cost and easily available devices, [5] presents

a flat-surface scanner to measure the color of the rice and their corresponding

uniformity. Similarly, Kozlowski et al. [6] propose a flatbed scanner to acquire

images and perform recognition of barley varieties. In addition to the use of70

scanners, in recent years, there are some proposals based on the usage of mobile

devices to acquire images of the visible spectrum, which are later on used in

the food grain classification process. For instance, [7] presents an approach to

evaluate the phenotypic parameters of the grains using mobile devices obtaining

quite precise results. More recently, Kar et al. [8] propose a deep learning based75

system to estimate food grain quality by means of a mobile device with limited

resources.
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2.1.2. Multiespectral

In general, multispectral images correspond to shots of a given scene cap-

tured within specific wavelength ranges across the electromagnetic spectrum, in-80

cluding the visible spectrum together with the infrared and ultra-violet ranges.

Typically, multispectral images consist of 3 to 20 spectral bands. Having several

images of a given grain, at different spectral bands, allow tackling the classifi-

cation problem, in a more robust and easy way. In the food grain classification

problem, some approaches rely on multispectral images from the ultraviolet,85

visible, and near infrared spectral bands. For instance, Gomez et al. [17] pro-

pose an approach to classify cocoa beans, from spectral signatures of the visible

and near infrared spectral bands. The cocoa beans dataset has been split up

into two categories: well fermented and over fermented. For the experiments,

multispectral images of 64 grains were acquired. For each grain 11 spectral90

images, in the spectral range of 350 nm to 950 nm, have been acquired. After

the image acquisition, the spectral signature of each grain has been obtained

obtaining the best results.

Also working in the visible and near infrared spectral bands, Liu et al. [45]

propose a method to determine the purity of rice seeds of non-transgenic vari-95

eties from their transgenic counterparts. The approach is based on multispectral

image analysis combined with the study of chemometric data. For the experi-

ments, 200 samples of the transgenic and non-transgenic rice seeds, respectively,

of the visible and near infrared spectra, in the range of 405-970 nm, were used.

The use of multispectral images combined with chemometric has shown the100

best results of the classification. In Liu 2016 et al. [34], the authors propose an-

other rice seed classification method based on the usage of multispectral images.

This technique uses 19 different wavelengths belonging to the visible and NIR

regions—between 405 to 940 nm. From this image information, morphological

features are extracted to classify the five rice varieties. Another approach in105

the multispectral domain has been presented in Sendin et al. [26]. In this case,

the authors propose also to use 19 spectral bands, spanning from the ultravio-
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let, visible, and near infrared bands (from 375 nm to 970 nm). The approach is

proposed to classify white corn defects. The types of defective materials were di-

vided into 13 classes. The images were acquired with a specialized multispectral110

capture imaging device.

2.1.3. Hyperespectral

On the contrary to multispectral imaging, which measures spaced spectral

bands, hyperspectral imaging measures continuous spectral bands. This results

in a large number of images, more than 20, in general, 200 bands, covering a115

vast portion of the electromagnetic spectrum. In Qiu et al. [25], the authors

propose the use of hyperspectral images to identify rice seeds in four different

varieties. The approach has been developed using two different spectral ranges

(380–1030 nm and 874–1734 nm). Another hyperspectral based classification

approach has been proposed by Pan et al. [59], referred to as MugNet, which is a120

simplified deep learning model based on hyperspectral image classification. This

hyperspectral imagery has 144 spectral bands between 400 to 1000 nm spectral

regions. The proposed multi-grained scanning strategy could not only extract

the joint spectral-spatial information but also combine different grains’ spectral

and spatial relationships. On the contrary to the previous approaches, in Chu125

et al. [9] an infrared hyperspectral (900-1700 nm) approach has been proposed.

The authors tackle the classification of healthy corn from infected from one of

the three hybrid classes of fungi: dented, waxy, and semi-flint endosperms. Also

working in the infrared spectral band, Berman et al. [56] present an infrared

hyperspectral approach to perform the classification of individual sound and130

stained wheat grains, belonging to 24 Australian different varieties. The im-

age data were normalized based on its means, using only the spectral shape.

The experiments were carried out with image samples over the 420–2500 nm,

420–1000 nm, and 420–700 nm wavelength range. Also in the infrared hyper-

spectral domain, Sendin et al. [2] propose an approach to classify whole white135

corn kernels. The method performs 13 classes division of disposal materials

using hyperspectral imaging from 1118 to 2425 nm with a 6.3 nm spectral reso-
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lution between the 209 spectral points. Hyperspectral imaging is also exploited

by Chu et al.[9], where an approach to classify infected corn seeds is proposed.

It uses infrared hyperspectral images in the range of 900 to 1700 nm.140

2.1.4. Discussions on image acquisition

Although most of the approaches proposed in the literature for the seed

grains classification problem work on the visible spectrum (see Table 1) there is

an increasing number of approaches that rely on information from other spectral

bands or other types of images (e.g., multispectral, hyperspectral), mainly due to145

the reduction in the prices of these technologies during the last decades. Accord-

ing to the reviewed papers, multispectral and hyperspectral based approaches

are good solutions not only to classify grains according to their features, such

as healthy or fermented but also to classify the grain varieties, which sometimes

are quite similar from a visual point of view. For instance, some multispectral150

approaches can classify transgenic and non-transgenic varieties. Another de-

tail to highlight from this review is that most multispectral and hyperspectral

approaches work on the visible and near infrared spectral bands, just a few ap-

proaches go further NIR spectral band reaching the short-wavelength infrared

or even mid-wavelength infrared. Regarding the ultraviolet spectral band, just155

a couple of works exploit this band.

It could be mentioned as a general conclusion that multispectral and hyper-

spectral technologies offer many possibilities that still need to be explored. The

main drawback that can be observed is the lack of well-documented and avail-

able datasets for reference. In most of the approaches presented in the literature,160

researchers acquire their dataset and make their contributions, which makes it

difficult to compare the different techniques. Hopefully, common benchmarks

will be shortly available to be used as references by the community.

2.2. PREPROCESSING

The reviewed approaches, in general, have some kind of preprocessing to the165

given raw images to put them all in the same format (e.g., cropping, scaling,
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color space mapping, etc.), or to facilitate the segmentation and classification

process by enhancing the given images (e.g., noise filtering, contrast, sharpness

enhancement, etc.) [16]. Hence, this section reviews the most relevant prepro-

cessing approaches.170

2.2.1. Cropping and scaling

In case raw data corresponds to a high resolution image, some cropping or

scaling is needed. The cropping technique consists of splitting up the given

image into regions of small size (patches) to obtain a more easy representation

to process images [13]. This splitting process allows to discard unwanted parts175

of the images and to focus just on the object of interest (e.g., [46],[20],[28] [42]).

Image cropping is also used by some authors, after segmenting the given image,

to focus the classification process just on a region of interest that contains just

a single instance (e.g., [13], [15]). Image scaling is also a very common process,

it points to resize the given images to represent them all at the same size. It180

involves a trade-off between efficiency, smoothness, and sharpness [46]. In Huang

Nen-Fu et al. [18], for instance, the authors do a resize to fit and represent the

data according to the model requirements, they resize the images to width and

length of 180 pixels each. In [15] the authors also apply a resize to their inputs

to 1024×1024, which is the default setting for Mask R-CNN. In [10], [28], and185

[14] image scaling is also considered in the preprocessing stage as an important

operation in their pipeline.

2.2.2. Image enhancement

Image enhancement steps are focused on the improvement of the image’s

quality from the human perception point of view, some examples are: removing190

blurring, noise, or increasing the content’s contrast [46]. In [15] an image en-

hancement is performed as a pre-processing step. Applying the contrast-limited

adaptive histogram equalization technique. In the case of noise filtering, the

most common approach is to apply a Gaussian filter. For instance, Garćıa et al.

[16] deal with this problem by using Gaussian filters with 2D Gaussian smooth-195
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ing. In [10], [43], and [49] Gaussian filters are also applied due to the type of

noise they have to tackle. On the contrary, in those cases where the noise is

produced by the low lighting conditions, other filters are considered. In other

words, depending on the type of noise different filters should be applied; for

instance, in Gujjar et al. [46] a special median filter is used to remove noise200

and smooth the given image. In [44] a median filter is also applied because it

preserves the edges during the noise removal process; [47] and [39] follow the

same approach. In most cases, a previous grayscale conversion is considered for

the operations of filtering. Both [27] and [10] apply a median filter while they

use Sobel edge detection to preserve edges during the noise removal process.205

2.2.3. Morphological operations

Morphological operations, such as classical erosion or dilation, have been also

used as preprocessing to tackle some specific tasks. For instance, in [43] and

[52], the authors use erosion to eliminate shadows of grains followed by dilation

to enhance the image after the erosion and improve the boundary sharpness.210

Other solutions, for instance, [28], use morphological operations, during the

preprocessing stage to remove white spot noise in the background. Although

results are improved after using morphological operators, the main drawback

lies in its high computational cost.

2.2.4. Color conversion215

Color space conversion is generally used to produce robust solutions or to

highlight some specific features of the given image. There are different color

spaces (e.g., RGB, CIELAB, CIEXYZ, CMYK, etc.), being the RGB the one

generally used in the grain classification problem. The capability of working at

different color spaces is exploited by Patil et al. [52]; in this work, the RGB220

color model is mapped to an L*a*b and HSI color spaces to later on make

possible the color feature extraction, which is going to be the input for the

classifier. In [35] the author proposes an approach for the classification of five

types of grains, extracting morphology, color, and texture features. To increase

13



the accuracy of the classification, the original RGB color space is converted to225

an HSV color, which obtains the best results. A similar approach is followed

in [3] where the authors present an approach to classify five types of rice, using

a vector of characteristics applying the BPNN algorithm using the luminance

component of the converted HSV color spaces. More recently, the same research

team has proposed an extension [11] of their previous work. In this case, the hue230

channel and an algorithm based on a neuro-diffuse cascade network are used to

obtain similar results for all four types of rice grains. Others authors, like [28],

[19], and [38], propose to convert the given images to grayscale and use them

as inputs to the system. Actually, working in grayscale, just one dimension is

considered, hence in these cases the texture or intensity analysis is considered235

[42].

On the other hand, in [14], [50], and [51] the authors propose the usage of

color histograms to obtain the best threshold value. Based on the information

obtained from the color histogram of the RGB image channels, some authors

(e.g., [14], [38], [54], [57]) propose to use just one channel of the input image.240

Altuntacs et al. [14] use the blue channel of the RGB image to converts it

to grayscale and then apply morphological operations using a median filter to

reduce noise on corn kernel images. In the case of Birla et al. [38], the authors

propose to use the green channel of the given image to converts it to grayscale

and then apply a manual threshold to obtain the segmented image of rice grain.245

2.2.5. Discussions on preprocessing approaches

As in most computer vision applications, the quality of the final results is

directly related to the quality of the input data; noisy data, low contrast, poor

lighting, overlapping objects all of these factors would represent a challenging

problem. Hence, there is a clear trade-off between the time and effort spent in250

the preprocessing stage and the quality of the final results. A common charac-

teristic among the reviewed works is that all the image acquisition conditions

are kept under control. This reduces the processing operations and helps to

obtain good results. Due to the particular nature of each problem, having the
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correct color representation is a key factor when classifying the different types255

of grains, since the classic RGB representation is not always the best option,

which is why it would be necessary to carry out a preliminary evaluation of

the different color models within the preprocessing stage to find the best option

depending on the problem to be addressed. Another challenge related to this

problem is a multi-touch scenario, which makes the classification task difficult.260

Most of the recent works are based on deep learning; in these cases, some authors

use preprocessing techniques of cropping and scaling to generate the necessary

amount of diversity of scenarios to carry out the training of the model.

2.3. SEGMENTATION

Following the pipeline defined in this work, after carrying out the prepro-265

cessing tasks the next step is to segment the grains present in the image; most of

the approaches in the literature make use of state-of-the-art segmentation tech-

niques, instead of developing an ad-hoc approach for the grain segmentation

problem. Segmentation techniques are operations that allow us to split up the

given image into the different regions present on it. In this section approaches270

generally used on grain segmentation are reviewed; they are grouped into two

categories: i) classical image processing based approaches; and ii) deep learning

based approaches.

2.3.1. Classical Approaches

One of the most widely used image grain segmentation techniques is just the275

thresholding; this technique works on grayscale images and performs the bi-

narization using a threshold value, which depends on the type of grain analyzed

together with the background color [58]. It should be mentioned that sometimes,

after the image segmentation, some postprocessing techniques are applied to en-

hance the results, some of these postprocessing approaches are described next.280

The main drawback of thresholding techniques lies in their sensitivity to the

selected threshold value used to generate the binary image.
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As mentioned above, in some cases, after thresholding techniques some ad-

ditional processes are performed to the obtained binary image to improve the

results from the further classification process; the problems generally found are285

related to the presence of noise and holes from the segmentation. For instance,

in Kaur et al. [39] the authors apply smoothing and an enhancement to reduce

noise and improve image contrast on the segmented rice kernels. Arboleda et

al. [22] use image processing techniques and color feature extraction of input

images to segment coffee kernels. Shamin et al. [10] use Canny’s edge detection290

algorithm to identify the boundaries of rice grains and hysteresis thresholding to

improve the binarization process. Mebatsion et al. [48] use a set of operations—

thresholding, edge detection, and chain coding—to segment the given image.

Wah et al. [28] removes the noise of binary image (areas smaller than 10 pixels)

applying two morphological operations, first erosion, and then dilation. Huang295

Nen-Fu et al. [18] improves segmentation by applying a color detection method

to remove the background of the coffee beans. Finally, Qiu et al. [25] are the

only one in the reviewed literature that uses the spectral dimension and then

applies thresholding to obtain the binary image.

On the other hand, Silva [49], Son [20], and Douik [53] use the background300

subtraction method for segmenting rice kernels; in Silva et al. [49] an additional

morphological opening is applied together with a contrast stretching to the given

grayscale image. The usage of morphological operations has been also exploited

in Guevara [51] and Siddagangappa [43] to delete shadow and improve edge

sharpness to get better results. Some authors (e.g., [47], [31], [28]) use the305

Otsu method to convert the grayscale image to a binary image, according to

the defined threshold value, to extract the grain from the background.

Watershed is another technique widely used to extract segmented grains

from the background. This technique uses a grayscale image where the tonality

variations could be represented as a topographic surface where the highest in-310

tensity values would be the peaks while the lowest values would be the valleys.

At the beginning of the process each valley is filled in with a different color,

then it continues to fill in until the adjacent regions begin to touch and the
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boundaries between each region are well defined. As a result of this process

the regions obtained with the different colors are the resulting segmented im-315

age. Huang Sheng [19] and Shrestha [36] use the watershed method to obtain

the segmented instance of each grain; in the first case, this method is used to

segment corn kernels while in the second case it is used to segment wheat ker-

nels. After generating the binary mask elements are extracted from the original

given input image to proceed with the classification stage; Actually, some au-320

thors carry out several additional steps to separate each instance of grain, this

will depend on whether the image has a single kernel or a cluster of grains.

In the case of clusters, each instance must be identified in order to be used in

the classification task. Altuntacs et al. [14] propose an approach to extract

bounding boxes using contour lines for each grain. Zareiforoush [42] and Kilicc325

[57] use a set of functions to separate and label each grain that existed in the

image. Guevara et al. [51] calculate the center of mass of the regions obtained

in the binarization process to label each instance of the wheat and barley grains.

Finally, another approach is proposed by Siddagangappa et al. in [43]; once the

image is binarized, a labeling process is performed over connected components330

by using labels and the similarity of gray level values.

2.3.2. Deep Learning Based Approaches

On the contrary to the classic approaches reviewed in the previous section,

the techniques based on deep learning use artificial neural networks, to extract

the higher-level features present in the given image. There are two types of335

segmentation under the deep learning framework: semantic segmentation and

instance segmentation. According to each case, there are specialized networks

that can obtain the binary mask of the objects of study, which are classified (e.g.,

people, cars, fruits). Semantic segmentation involves linking each pixel of an

image to a class label, that is, a binary image is generated for each class of object340

present in the image [60]; while instance segmentation allows differentiating

between each instance of the objects [61].

Based on the reviewed literature, it was found that the Mask R-CNN ar-
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chitecture [61], has been the most commonly used architecture (e.g., [15], [12],

[13]). This network allows us to perform the segmentation of instances and345

obtain the binary mask of each grain present in the input image. In all these

approaches the authors did not change the original architecture. It should be

mentioned that the Mask R-CNN is used to segment different types of cereals;

in [15] different varieties of rice grains are segmented, while [12] performs the

segmentation of different types of grains, such as rice, lettuce, oats, and wheat;350

on the contrary to previous works, [13] uses the Mask R-CNN to segment corn

kernels.

2.3.3. Discussions on segmentation approaches

According to the reviewed literature, one of the techniques most used by the

authors was thresholding. The main reason for its popularity is because this355

technique presents a very low degree of difficulty in its implementation, while

provides acceptable results. It should be noticed that most of the success of

this technique lies in the fact that all the environmental conditions, such as

lighting, background colors, among others, are controlled and very well stud-

ied to obtain the most optimal results. These approaches tend to fail in those360

multitouch kernel scenarios, where grains not only touch but also have partial

occlusions. A common element in most of the classical image processing based

approaches is the usage of some post processing stage to improve the segmenta-

tion result, before going to the classification stage. For instance, morphological

operations are generally used to eliminate noise, fill in holes, and improve the365

grains’ boundaries on the binary image resulting from the segmentation. Like in

most of computer vision applications, deep learning frameworks are also getting

used in the grain segmentation problem; among the different models, the Mask

R-CNN architecture is the most widely used. Given the results obtained with

the approaches based on the deep learning framework, the trend in recent pub-370

lications indicates that this is the framework to apply in future contributions.

Figure 2 presents the chronology of segmentation approaches used in the food

grain variety problem showing this trend.
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Figure 2: Timeline of segmentation approaches used in the food grain classification; this

timeline shows the first time a given approach is used.

2.4. CLASSIFICATION

Following the pipeline presented in Fig. 1, once images are segmented, every375

single instance is classified according to the required categories. Like in the seg-

mentation module reviewed in the previous section, approaches in the literature

are grouped in two categories: classical pattern recognition techniques (e.g.,

SVM, K-NN, linear discriminant analysis) are reviewed first and then recent

deep learning based approaches are considered.380

2.4.1. Classical Approaches

Most of the time, classical approaches follow a features extraction stage,

where the goal is to obtain the most representatives features, which will then be

used by a machine learning classification algorithm to be trained. In this con-

text, according to the reviewed literature and before the growth and popularity385

of deep learning, Artificial Neural Network (ANN) was used. In [36] an ANN

model was designed using as an input the features extracted from the alpha-

amylase activity, together with the corresponding labels. By using ANNs and

visual features as inputs Sabanci et al. [31] and Shrestha et al. [36] approaches

perform the classification of wheat grains. Both authors agree that features390

such as color, texture, and size are ideal for addressing the grain classification

problem.
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Also based on classical approaches, in Garćıa et al. [16] an image processing

plus machine learning approach is proposed to classify green coffee beans. The

beans are classified as good or defectives (five types of defects), using the K-395

NN algorithm; previously, a feature extraction stage is accomplished obtaining:

surface area, roundness, area relation, and eccentricity. These features are used

to train the classifier. Vlasov & Fadeev [30] also follow this approach classifying

five different types of seeds with K-means clustering.

In the context of classical approaches, some authors use the SVM, also known400

as a hyperplane classifier, to classify food grains. The main objective of this

algorithm is to determine an optimal line (plane or hyperplane, depending on the

feature space dimension) that allows separating two given classes [1]. However,

in the case of performing a multiclass classification, it is necessary to build a

combination of several binary classifiers; this is the case of the work presented by405

Kaur et al. [47] that performs the multiclass classification of different qualities

of rice grains.

Another approach followed by some authors in the reviewed literature is

the usage of Partial Least Squares Discriminant Analysis (PLS-DA), which is

a classification method that integrates the characteristics of conventional PLS410

regression with the discrimination benefits of a classification technique. The

main advantage is that the relevant sources of data variability are modeled by

the so-called latent variables, which are linear combinations of the original vari-

ables, and, consequently, it enables graphical visualization and understanding

of different data patterns. In the reviewed literature, Sendin et al. [26] ad-415

dress the problem of classifying defects in corn using the PLS-DA technique

described above. This approach uses multispectral images. The same authors

[2], in an update to the previous work, use PLS-DA models to classify grains of

white corn using hyperspectral images obtaining precision in the classification

of about 98%.420
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2.4.2. Deep Learning Based Approaches

Since the evolution of the technology, especially regarding memory capabil-

ities and parallel processing of a big amount of data, deep learning has taken a

big advantage with a variety of tasks in the computer vision field. In the partic-

ular case of image recognition, for agricultural problems, it is not the exception.425

CNNs ensure significant facilities by suppressing manual feature extraction, usu-

ally executed in classical approaches, and overcoming state-of-the-art results for

such tasks [14]. Hence, in recent years new approaches have been proposed to

tackle the grain classification problem; in this section, the most relevant deep

learning based approaches are reviewed.430

Altuntas et al. [14] found a solution for automating identification between

haploid and diploid corn seeds. Their proposal includes the usage of very ex-

tended networks for classification such as AlexNet, VGGNet, GoogLeNet, and

ResNet. A transfer learning strategy is used in that work, which consists of fine-

tuning the model starting by transferring the weights from a pre-trained network435

to the new one. The authors of that work compare the different classification

architectures and obtain the best results with VGG-19. A similar approach to

the one presented above has been followed by Sheng et al. [19]; in this case,

the authors propose to classify defectives corn kernels from goods, with defects

including mold, worm, damages, and discoloration. In this work, GoogLeNet440

and VGG networks were evaluated under a transfer learning scheme, and the

first one obtains better results. Both approaches overcome machine learning

state-of-the-art results. Finally, in [25], the authors also use VGGNet to speed

up the learning process and outperforming state of the art results.

On the contrary to previous approaches, there are some recent works where445

authors design a custom solution (e.g., [18], [13], [23]). In the case of [18] a two

convolutional layer network, with a Rectified Linear Unit (RELU) activation

function, is proposed; this network is trained with grayscale images in order to

make it easier to detect the shape of green coffee beans and their dark color. In

the case of [13], the authors propose a lightweight CNN architecture, referred to450
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as CK-CNN, to classify corn kernels into three categories: good kernels, defective

kernels, and impurities. The network receives as an input a single element from

the segmentation module. It consists of five layers: three convolutional layers

defined with a 3×3 size kernels and two fully connected layers. Finally, in [23] a

novel architecture is designed with five convolutional blocks, each containing a455

linear operator followed by non-linearities such as RELU and max-pooling. The

main purpose of this network is to improve the accuracy of the classification

of three distinct groups of rice kernels. This simple architecture outperforms

traditional popular hand-engineered classification algorithms such as pyramid

histogram of oriented gradients, K-NN, SVM, and mixes of them.460

2.4.3. Discussions on classification approaches

From all the works presented above, we could conclude that deep learning

approaches are becoming the most widely used solution. Among the differ-

ent architectures, although general purpose networks have been used, such as

Alexnet, GoogLeNet, VGGNet, recent ad hoc models have been designed show-465

ing appealing results. One of the main advantages of such a kind of customized

solution lies in the reduced number of parameters. The weakness of these type

of classification approaches is that the architectures are designed according to

the type of grain and the most relevant features of it, for example, the architec-

ture that gives good results in the case of rice, perhaps is not the best model for470

grains such as wheat or corn. According to the recent literature, we could state

that there is a lot of space for improvement in the classification module of the

pipeline presented in Fig. 1. Just to have everything in a single picture, Fig. 3

depicts the chronology of classification approaches used in the food grain classi-

fication problem; it includes the approaches that have been considered to solve475

this problem during the last 20 years—the first time an approach is considered

it is presented in the chronology.
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Figure 3: Timeline of classification approaches used in the food grain classification problem;

this timeline shows the first time a given approach is used.

2.5. APPLICATIONS

There are several food grain applications based on computer vision, in gen-

eral, they can be grouped in: i) quality control approaches and ii) grain variety480

classification. Some examples of each one of them are provided in the next

subsections.

2.5.1. Quality control

Grain grading approaches evaluate constituent features (e.g., moisture, crude

protein, fiber, etc.) as well as visual features such as shape (including perime-485

ter, area, elongation, among others), color, and texture of a given sample set

of grains. Constituent measurements are obtained using tools and machines

especially devoted to such tasks, while visual features are manually extracted

employing trained operators. This manual process is a time consuming op-

eration and cannot ensure consistency due to the difference in the operator’s490

evaluation ability. There are several works proposed in the literature to per-

form grain quality control. In [37] the authors present an algorithm to recognize

strong and weak gluten wheat. Also focusing on grain quality, Birla et al. [38]

propose a method for estimating the size of Oryza sativa L rice class along with
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the detection of chalky and broken rice. Another rice quality control application495

can be found in [47], where the authors present a multiclass SVM algorithm to

determine the grade of 4 types of rice kernels. There are also approaches in the

literature for wheat grain quality control, for instance in [8] the authors pro-

pose a CNN approach to evaluate wheat grains according to electronic National

Agriculture Market parameters of India, which enforce automatic grain quality,500

using inexpensive mobile phones.

Also related with the quality control problem, but for a given sample set,

some approaches evaluate the sample as a whole, in other words, they measure

the percentage of good kernels, defective kernels (including broken or rotten

kernels), and impurities (e.g., pieces of straw, foreign elements, dust) in the505

given sample set. A review of these applications is found in the works proposed

by [10] to grade rice quality, or [11] and [13] to classify corn according to their

quality using CNN.

2.5.2. Grain Variety Classification

On the contrary to previous approaches, there are some works intended510

to classify the kernels in the given sample set according to the different grain

varieties. Choosing which variety to grow is one of the most important factors

in the field of the agricultural industry. To obtain the maximum yield, cereal

varieties must be effectively identified. Therefore, each variety of grains must be

scored based on each of the important characteristics, such as yield, resistance515

to diseases, resistance to fungi, and quality of the grain to select the most

suitable variety. In [6] the author proposes a CNN based recognition system

for barley varieties identification; this approach is used to ensure the quality

of the beer. In the same line of identification of varieties of barley, in [40] an

automatic computer vision system is proposed to efficiently classify the varieties520

of barley grains, using their attributes of color, texture, and shape, to produce

high quality malt. About corn grains classification algorithms, Huang et al.

[33] propose a hyperspectral imagery system to classified seed varieties using

an LS-SVM model. In the same way, in [21], the authors propose a system to
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effectively classify 17 varieties of maize seed based on a multi-linear discriminant525

analysis model. On the other hand, in [56], the authors present an approach

that implements a pixel-wise algorithm to classify wheat grains of 24 different

Australian varieties. The authors in [34] and [25] propose approaches to classify

rice variety using LS-SVM and CNN respectively. Similarly, in [46] the authors

propose an approach to identify six varieties of Basmati rice; the approach is530

based on color, morphological and textural features. This subsection is just a

summary of some of the recent approaches proposed in the literature for grain

variety classification.

2.5.3. Discussions on Applications

As presented above, computer vision systems have been used to support grain535

grading, sample quality estimation, variety classification, counting elements,

just to mention a few of the approaches proposed in the food grain handling

units. Most of the applied approaches depend on the type of grain that is

being processed; in other words, the proposed approaches are not for multi-grain

variety problem, neither used for both: grain variety estimation and quality540

control. It can also be concluded that the use of several spectra has helped

to improve the classification techniques of multiple varieties of grains, which

allows addressing different problems with a single implementation. It can also be

evidenced that in the quality control of grains, techniques based on deep learning

have taken on greater relevance given the best obtained results. A weakness of545

the reviewed applications lye in the used dataset, up to our understanding there

is not a benchmark dataset to be used as a reference to evaluate and compare

results of applications targeting the same problem.

2.6. GRAIN VARIETY

This section reviews the state-of-the-art grain classification approaches ac-550

cording to the type of grain. The main food grains studied in this section are:

corn, rice, wheat, barley, and coffee; these categories are defined according to the

number of publications on these varieties and sorted according to the statistics
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of the most worldwide cultivated cereals published by the Food and Agriculture

Organization Statistical Database (FAOSTAT)3. Approaches able to tackle the555

classification of several varieties of grains are listed in the last subsection. Table

2 groups the reviewed literature according to the grain variety and depicts the

most important features of each approach.

2.6.1. Corn

Corn is the cereal with the highest production worldwide, being fundamental560

in the human diet and some animal species, also has high genetic variability,

which allows it to adapt to any climatic environment according to FAOSTAT.

Given its high industrial use, it is important to improve the quality control

of the corn grain. Hence, this section list a series of techniques focused on the

automatic classification of corn kernels. Some of them have been able to classify565

up to 17 different classes (e.g., [21], [33]), using hyperspectral or multispectral

images. The analyzed techniques are mostly non-touching kernels [24]. A few

approaches have been implemented with CNNs [14], which allows improving the

classification accuracy. Like in the rice and wheat cases, in the corn there are

approaches intended to discriminate corn grains by variety [24], while others570

are intended to classify according to the quality of the sample (e.g., [19], [29]).

Each implemented approach has its own data acquisition process, generating a

dataset that is not available for further comparisons or improvements.

2.6.2. Rice

Rice is at the base of the food chain in many countries; according to FAO-575

STAT rice production represents the second-largest cereal production after corn.

To improve the process of identifying the types and quality of rice an automatic

and accurate classification process is required, which is a challenging problem

due to the high similarity between the different varieties. This subsection lists

the different approaches proposed in the literature for rice classification. In the580

3 http://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en
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reviewed literature, some recent approaches for classifying rice kernels according

to the different varieties have been proposed (e.g., [34], [28]), other approaches

have been proposed to classify rice kernels according to their quality (e.g., [47],

[45]), while other approaches have been devoted for both, classifying according

to the variety and quality [43]. Among the different reviewed approaches, hyper-585

spectral and multispectral based techniques, generally using CNNs, are the ones

that allow classifying the greatest number of varieties or reaching the highest

performance on quality classification (e.g., [25], [45], [34]). In spite of that, the

vast majority of techniques use images from the visible spectrum (e.g., [15], [27],

[23], [3], [20]). Most of the approaches are intended for the non-touching kernel590

scenario, which represents an opportunity to explore techniques that support

touching kernels.

2.6.3. Wheat

Wheat is the third most important grain in the human food chain after corn

and rice. The huge volume of production needs effective methods to evaluate595

the quality of the grains, and to improve productivity in the industry. The main

objective is to improve quality control and replace manual processes that require

time, effort, and are ineffective in most cases. The following is just a summary of

some of the approaches proposed in the literature for the automatic classification

of wheat grains. During last decades several techniques have been designed to600

determine the wheat variety (e.g., [1], [53], [51]) or quality of wheat grain (e.g.,

[36], [30], [31]). On average, the approaches proposed in the literature tackle the

two or three class problems. On the contrary to the rice classification problem

we can find approaches for touching kernels [36], as well as approaches for the not

touch case (e.g., [53], [37]). In the vast majority of cases, the proposed solutions605

are based on machine learning (e.g., [36], [31]). Like in most computer vision

domains, we can find also CNN based approaches for the wheat classification

[30], although up to our knowledge there is not that much work based on deep

learning. Hence, this can be an opportunity to improve the precision of current

wheat classification approaches.610
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2.6.4. Barley

According to FAOSTAT, barley is the fourth most cultivated cereal world-

wide and is currently grown significantly as animal feed, malt products, and

human food, respectively. Due to the importance of this cereal, it is necessary

to have mechanisms that allow automating specific tasks within the production615

process to optimize the available resources as much as possible and increase

productivity. During the last years, several techniques have been developed

for the identification and classification of different varieties of barley (e.g., [58],

[54], [55], [53], [51], [48]). In addition to the identification and classification

topics, other authors address the problem of quality analysis of barley grains620

within the beer and malt brewing process (e.g., [40], [6]). On the other hand,

the analysis of the barley phenotype is another of the topics addressed in the

literature [12]. In most of the approaches, the analyzed cluster of grains con-

tains non-touching kernels, which is not a realistic scenario. In a large number

of cases, the proposed solutions are based on machine learning although very625

few works are based on deep learning techniques (e.g., [12], [6]), which provides

an opportunity to improve the accuracy rate of previous works.

Table 2: Literature reviewed grouped by type of grain.

Type of grain Author(s) # of Classif. Categories
class. acc.%

Rice

Shamim(2020) [10] 8 82.00 PR, RH-10, sharbati, sona ma-

soori, sugandha, pusa basmati

(1509, 1121 and 1401)

Singh(2020) [11] 4 96.75 class A, class B, class C, class D

Aukkapinyo(2019) [15] 4 81.00 RD15, RD23, RD75, ML105

Lin(2018) [23] 4 95.50 indica, japonica, glutinous, overall

Qiu(2018) [25] 4 86.40 xiushui 134, zhejing 99, zhongji-

azao 17, zhongzao 39

Tin(2018) [27] 5 80.00 paw san hmwe, lone thwe

hmwe,ayeyarmin, kauk-nyinn-

thwe,kauk-nyinn-pu

Wah(2018) [28] 4 92.00 class A, class B, class C, class D

Liu(2016) [34] 5 94.00 FD2, QXY512, HXD3, QXY822,

WKJ11

Singh(2016) [3] 4 96.00 type1, type2, type3, type4

Birla(2015) [38] 4 93.57 normal, small, large, broken
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Table 2: Literature reviewed grouped by type of grain.

Type of grain Author(s) # of Classif. Categories
class. acc.%

Rice

Kaur(2015) [39] 5 97.21 pusa 44, PR122, PR121, pusa bas-

mati (1509 and 1121)

Zareiforoush(2015) [42] 5 89.80 very bad, bad, medium, good,

very good

Kambo(2014) [44] 4 79.00 classic basmati, rozana, mini,

overall

Liu(2014) [45] 2 100 non-transgenic, transgenic

Sun(2014) [62] 2 98.05 indica, japonica

Gujjar(2013) [46] 6 84.83 6 varieties of basmati

Kaur(2013) [47] 4 86.00 premium, grade A, B and C

Silva(2013) [49] 9 91.55 AT307, BG250, BG358, BG450,

BW267, W361, BW363, BW262,

BW364

Mousavirad(2012) [50] 5 98.40 mahali, neda, gerde, fajr, hashemi

Wheat

Kar(2019) [8] 8 - full grain, damaged, weevilled,

broken, immature/shrivelled,

other food grains, inorganic and

organic foreign matter

Sabanci(2017) [31] 2 99.00 bread, durum

Shrestha(2016) [36] 3 72.80 sound, sprout-damaged, severe

sprout-damaged

Olgun(2016) [1] 40 88.33 wheat grain species

Tan(2016) [37] 3 93.94 strong, medium and weak gluten

Bernan(2007) [56] 4 95.00 sound, blackpoint-affected, fungal

stained, pink stained

Barley

Toda(2020) [12] 20 95.00 19 domesticated and 1 wild barley

Kozlowski(2019) [6] 11 93.20 11 varieties of two-rowed barley

Szczypinski(2015) [40] 11 91.00 11 varieties of two-rowed barley

Mebatsion(2013) [48] 1 98.50 -

Guevara(2011) [51] 1 99.00 -

Douik(2010) [53] 1 98.70 Tunisian barley

Choudhary(2008) [54] 1 98.60 Special select malt barley

Zapotoczny(2008) [55] 2 94.94 2 varieties of polish spring barley

Paliwal(2003) [58] 1 96.00 -

Corn

Chu(2020) [9] 3 100 jingKe, jingNuo, xianYu

Velesaca(2020) [13] 3 95.60 good, defective, impurity

Altuntas(2019) [14] 2 94.22 haploid, diploids

HuangSheng(2019) [19] 5 95.00 worm, mold, damages, good, dis-

coloration

Sendin(2019) [2] 14 99.40 sound, 13 undesirable materials

Xia(2019) [21] 17 99.13 17 varieties of corn

Miao(2018) [24] 8 97.5 Zhou 1, TZ 23, GCT 3, XXWCT,

GHT, HJ 9, XT, SL78
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Table 2: Literature reviewed grouped by type of grain.

Type of grain Author(s) # of Classif. Categories
class. acc.%

Corn

Sendin(2018) [26] 2 91.50 sound, defective

Wen(2018) [29] 2 - fresh, dry weights of seedlings

Yin(2017) [32] 5 97.00 5 grades of moldy corn

Huang(2016) [33] 17 92.00 17 varieties of seeds

Wen(2015) [41] 2 - fresh, dry weights of seedlings

Coffee
Green

Garcia(2019) [16] 6 90.00 high-quality, very long-berry; bro-

ken, sour, black and small defect

HuangNenFu(2019) [18] 2 93.00 good, bad

Black Arboleda(2018) [22] 2 100 normal, black

Others

Beans Kilicc(2007) [57] 5 90.60 AA, BB, BC, CB, CC

Cocoa Gomez(2019) [17] 2 98.43 well-fermented, over-fermented

bean Son(2019) [20] 2 93.85 whole, broken

2.6.5. Coffee

The quality of coffee grains is determined by factors such as color, odor,

texture, size, among the most important. In recent years several techniques630

have been proposed to improve the selection processes of coffee beans. Some

of these techniques are listed below, describing their scope and focus. The

analyzed coffee classification techniques are based on images of the visible spec-

trum [22], [18]. The classification discrimination in most cases is limited to two

classes (e.g., [22], [16]). The developed methods generally use traditional ma-635

chine learning based techniques [22]. On the contrary to the previous cases, in

the coffee beans classification problems, all techniques tackle the non-touching

kernel classification case [18].

2.6.6. Others

In addition to the approaches listed above, which were focused on the largest640

production grains, there are other approaches intended to classify different food

grains. These approaches are mainly motivated by quality classification. They

can differentiate up to two or three classes of grains’ quality; some examples are

the beans [17] and cocoa beans [57] classification problems. In these cases, the

approaches have been designed to work with untouched kernels, which reduces645

the complexity of the problem to be solved. In most of the cases, the proposed
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solutions are based on K-means clustering, SVM, and ANN techniques to obtain

the best results. There is no comparison between the techniques because each

one of them has implemented its own image acquisition system, generating its

own datasets, which are not available for comparisons.650

2.6.7. Multi-variety

In addition to the approaches presented above, which are focusing on grad-

ing techniques with a single variety of grains, there are some techniques able to

tackle the classification of several varieties of grain with the same algorithm, such

as rice, Brazilian beans called Carioca, chickpeas, lentils, corn, wheat, barley,655

among others. For instance, in [12] the authors propose a multi-variety ap-

proach that is trained using synthetically generated images. Others multigrain

classification approaches use real images of the visible spectrum, for instance

in [35] and [54] machine learning based approaches are proposed to perform

multiple grading of grains. In most of the cases, the implemented multi-variety660

techniques use morphological characteristics in order to differentiate the spe-

cific details of the grains and perform a better classification (e.g., [53], [51], [48],

[58]). Although results from multi-variety approaches are interesting, they do

not reach the performance of single variety approaches. Furthermore, in gen-

eral, in the seed classification problem, there are not multi-variety scenarios. In665

other words, the grains come from the harvest of a single crop.

2.6.8. Discussions on grain variety

After reviewing the techniques that allow the classification of different types

of grains it can be summarized that former works were mainly based on the

analysis of color and texture features; geometry has been also considered in some670

cases. On the contrary to previous approaches, where handcrafted solutions

were proposed, more recent techniques rely on deep learning strategies where

CNNs are trained with a large labeled dataset. In most cases, the approaches

use their own datasets to train and validate the techniques. Following the trend

on deep learning based approaches, in the grain classification, there are some675
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approaches based on the usage of synthetic ground truth. As mentioned above,

this allows tackling the classification of different varieties at a low cost (i.e., a

large amount of ground truth data is obtained easily). Although not included

in the pipeline presented in Fig. 1, ground truth data generation is reviewed in

the next section.680

As specific conclusions for each grain variety, it can be stated the following.

In the case of a rice grain, the proposed approaches have been migrating from

classical machine learning techniques to CNNs models, in order to improve the

efficiency of the obtained results. In the wheat grain classification domain, it

could be observed that the use of multispectral or hyperspectral images is gener-685

ally used to improve class differentiation. In the case of coffee grain approaches,

the proposed techniques mostly use images of the visible spectrum and do not

explore the use of CNNs. The touching kernel scenario has not yet been ex-

plored, which is an opportunity to tackle new problems. Additionally, exploring

the use of multispectral or hyperspectral images to improve class differentiation690

has not been yet considered. In the case of multi-grain techniques, although at-

tractive results have been obtained, their performance does not reach standalone

single variety approaches.

2.7. GROUND TRUTH

Although not included in the pipeline presented in Fig. 1, ground truth695

data are an important part for both, validating results from a given approach

as well as comparing performances from different proposals. In addition to

these usages, ground truth data are needed to train machine learning-based

approaches. In general, a large amount of tagged data are required for training

algorithms, which becomes a laborious and time consuming task. A possible700

solution to this problem is to work with synthetic images, which include the

necessary annotations, with which, there is no longer a dependency on trained

human work in making annotations. This section reviews strategies followed in

the literature to generate datasets, both real and synthetic, together with the

corresponding annotations for a ground truth generation.705
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2.7.1. Real data

Most of the authors of the reviewed literature perform data acquisition from

scratch, at all times controlling the conditions of the environment where the

images are obtained. For example, the distance and location of the camera are

always controlled, where most of the time the camera is orthogonal to the acqui-710

sition surface at a specific distance to view the largest amount of grains and also

maintaining an adequate aspect ratio. Another important condition to consider

was the light source, which generally is located on top of the working area where

the grains were placed (e.g., [38], [16]). There are different approaches to carry

out annotation tasks of the ground truth, some authors use the manual label-715

ing of the input data with the help of crowdsourcing tools such as Labelbox4,

Voxel515, Lionbridge6, SuperAnnotate7, just to mention a few [13], [12]. This

way of performing data annotations is the most expensive method in terms

of time and resources used and depends on the number of objects present in

the scene. Hence, trying to avoid this time-consuming task, some authors [15]720

use digital image processing techniques to partially automate the annotation

process; among the different approaches proposed in the literature, watershed,

discussed in Sec. 2.3.1, is the most used despite of the fact it has some drawbacks

(e.g., over-segmentation, delimitation of incorrect contours, among others) but

with controlled environmental conditions it is a good option to save time.725

2.7.2. Synthetic data

In most of the approaches mentioned in previous sections, the ground truth

has been obtained from images captured from the real world, as aforementioned

this task requires a lot of effort and time on both activities: image acquisition

and image annotation. Trying to overcome these problems some authors gen-730

erate ground truth from synthetic images. This synthetic images are obtained

from virtual environments where different grain distributions (e.g., [12], [8])

may be generated. It should be noticed that the usage of 3D grain models in

4 labelbox.com 5 voxel51.com 6 lionbridge.ai 7 superannotate.com
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virtual environments not only helps to avoid the time required for the acquisi-

tion and annotation but also it helps to generate datasets with large variability,735

which are required for training deep learning algorithms. As more complex the

3D grain model (parametric representation that allows changes in size, texture,

and color) and virtual environment (lighting conditions, camera models, etc.)

as large the acquired dataset will be. Taking advantage of the generalization

offered by the synthetic data acquisition framework, Toda et al. [12] propose a740

deep learning based grain detection method to identify seeds of various types,

for example, barley, rice, lettuce, oats, and wheat. Synthetic images acquired

in a virtual environment are used to train the model; then, the validation stage

is performed using real-world images. This model has been initially tested for

barley grains, but given the obtained results, the evaluations were extended to745

other types of grains, thus minimizing the time and cost of the process of ground

truth generation.

On the other hand, Kar et al. [8] perform the classification of wheat grains

by using a hybrid strategy where real images are used in a virtual environment

for training the instance segmentation architecture. In this case, the authors750

propose the usage of a synthetic cluster generator. This generator uses three

different ways of distributing the wheat grains to form the clusters. The first

approach places the kernel images, obtained from real scenarios, randomly; in

the second approach the kernels are also placed randomly but enforcing a maxi-

mum overlap constraint; while in the last approach, the kernels are placed using755

a cell-population simulator. The resulting synthetic images are used as input to

a U-Net architecture that performs the task of instance segmentation.

2.7.3. Discussions on ground truth

Generating ground truth involves spending time and resources that depend

on the type of approach used to generate it. In the case of real data, the labeling760

time is very long since each of the images obtained in the acquisition stage needs

to be manually labeled, as well as having experts in the area of the type of grain

to be analyzed. On the other hand, and although used in a lesser proportion,
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the generation of synthetic data seems a better option. By using synthetic

images there is no need to label the data neither to have an expert devoting765

time to this task; obviously, results would depend on the quality of the 3D

model used to represent the given grain (i.e., how similar it is to the real grain),

variability of such a 3D model (i.e., model parameters used to generate different

representations based on the combination of shapes, texture, and color), and

the virtual environment (i.e., lighting conditions, shadows, camera, and lens770

modeling, etc.) used to generate the synthetic images. Although considering

all the advantages synthetic data seems to be the best option, it is also true

that because it is a relatively new approach applied to the area of food grain

problem, just a few authors use it. Most of the works are based on the usage of

traditional techniques (i.e., ground truth manually annotated on real images).775

3. Conclusions

After reviewing the whole literature different conclusions and needs for fur-

ther work are identified. Firstly, it is clear the need for common benchmarks for

each of the grain varieties. As presented in Section 2.6, each approach is eval-

uated with datasets collected by the authors, most of the time without taking780

into account previous works. Having common benchmarks for each grain vari-

ety will allow comparisons and continuous improvement with new contributions.

In addition to the need of having available benchmarks, source code available

for comparisons is also needed. From all the reviewed papers just a couple of

authors offer the source code of their approaches for further comparisons.785

Another conclusion on the food grain classification problem is related to the

type of data to process, although most of the works are based on the usage

of color images, with a few contributions using infrared spectrum, it seems

multispectral and hyperspectral approaches are opening new possibilities. With

the improvement in technology and the reduction in the cost of these sensors, it790

is expected that in the near future a large set of new cameras will be available

to tackle this problem in a more efficient and robust way.
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Regarding the techniques used for the classification stage, as well as for the

segmentation stage, it can be concluded that approaches based on deep learning

are the trend. This is also supported by other applications in the computer795

vision literature, where deep learning has become the common framework. The

results of these deep learning approaches are outperforming those based on

classical techniques. Once again, having the source code available and evaluating

the same dataset will be an opportunity to compare all these contributions in

the same framework and identify the best option. Finally, regarding the variety800

of grains, it is clear that a lot of work has been done to classify rice, corn, and

wheat, but the classification of other varieties of grains has also been recently

explored, showing both the interest in the classification problem as well as the

capabilities of the computer vision based technologies to solve it automatically.

4. List of Acronyms805

ANN: Artificial Neural Network; BPNN: Back Propagation Neural Network;

CNN: Convolutional Neural Network; FAOSTAT: Food and Agriculture Or-

ganization Statistical Database; HSV: Hue, Saturation and Value; K-NN:

K-Nearest Neighbor; LS-SVM: Least Square Support Vector Machine; NIR:

Near Infra Red; PLS-DA: Partial Least Squares Discriminant Analysis; RELU:810

Rectified Linear Unit; RGB: Red, Green and Blue; SPA: Successive Pro-

jections Algorithm; SVM: Support Vector Machine;
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