toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Koen E.A. van de Sande; Theo Gevers; Cees G.M. Snoek edit  doi
openurl 
  Title Empowering Visual Categorization with the GPU Type Journal Article
  Year 2011 Publication IEEE Transactions on Multimedia Abbreviated Journal (up) TMM  
  Volume 13 Issue 1 Pages 60-70  
  Keywords  
  Abstract Visual categorization is important to manage large collections of digital images and video, where textual meta-data is often incomplete or simply unavailable. The bag-of-words model has become the most powerful method for visual categorization of images and video. Despite its high accuracy, a severe drawback of this model is its high computational cost. As the trend to increase computational power in newer CPU and GPU architectures is to increase their level of parallelism, exploiting this parallelism becomes an important direction to handle the computational cost of the bag-of-words approach. When optimizing a system based on the bag-of-words approach, the goal is to minimize the time it takes to process batches of images. Additionally, we also consider power usage as an evaluation metric. In this paper, we analyze the bag-of-words model for visual categorization in terms of computational cost and identify two major bottlenecks: the quantization step and the classification step. We address these two bottlenecks by proposing two efficient algorithms for quantization and classification by exploiting the GPU hardware and the CUDA parallel programming model. The algorithms are designed to (1) keep categorization accuracy intact, (2) decompose the problem and (3) give the same numerical results. In the experiments on large scale datasets it is shown that, by using a parallel implementation on the Geforce GTX260 GPU, classifying unseen images is 4.8 times faster than a quad-core CPU version on the Core i7 920, while giving the exact same numerical results. In addition, we show how the algorithms can be generalized to other applications, such as text retrieval and video retrieval. Moreover, when the obtained speedup is used to process extra video frames in a video retrieval benchmark, the accuracy of visual categorization is improved by 29%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ SGS2011b Serial 1729  
Permanent link to this record
 

 
Author Ferran Diego; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Joint spatio-temporal alignment of sequences Type Journal Article
  Year 2013 Publication IEEE Transactions on Multimedia Abbreviated Journal (up) TMM  
  Volume 15 Issue 6 Pages 1377-1387  
  Keywords video alignment  
  Abstract Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-9210 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DSL2013; ADAS @ adas @ Serial 2228  
Permanent link to this record
 

 
Author Weiqing Min; Shuqiang Jiang; Jitao Sang; Huayang Wang; Xinda Liu; Luis Herranz edit  doi
openurl 
  Title Being a Supercook: Joint Food Attributes and Multimodal Content Modeling for Recipe Retrieval and Exploration Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal (up) TMM  
  Volume 19 Issue 5 Pages 1100 - 1113  
  Keywords  
  Abstract This paper considers the problem of recipe-oriented image-ingredient correlation learning with multi-attributes for recipe retrieval and exploration. Existing methods mainly focus on food visual information for recognition while we model visual information, textual content (e.g., ingredients), and attributes (e.g., cuisine and course) together to solve extended recipe-oriented problems, such as multimodal cuisine classification and attribute-enhanced food image retrieval. As a solution, we propose a multimodal multitask deep belief network (M3TDBN) to learn joint image-ingredient representation regularized by different attributes. By grouping ingredients into visible ingredients (which are visible in the food image, e.g., “chicken” and “mushroom”) and nonvisible ingredients (e.g., “salt” and “oil”), M3TDBN is capable of learning both midlevel visual representation between images and visible ingredients and nonvisual representation. Furthermore, in order to utilize different attributes to improve the intermodality correlation, M3TDBN incorporates multitask learning to make different attributes collaborate each other. Based on the proposed M3TDBN, we exploit the derived deep features and the discovered correlations for three extended novel applications: 1) multimodal cuisine classification; 2) attribute-augmented cross-modal recipe image retrieval; and 3) ingredient and attribute inference from food images. The proposed approach is evaluated on the constructed Yummly dataset and the evaluation results have validated the effectiveness of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MJS2017 Serial 2964  
Permanent link to this record
 

 
Author Luis Herranz; Shuqiang Jiang; Ruihan Xu edit   pdf
doi  openurl
  Title Modeling Restaurant Context for Food Recognition Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal (up) TMM  
  Volume 19 Issue 2 Pages 430 - 440  
  Keywords  
  Abstract Food photos are widely used in food logs for diet monitoring and in social networks to share social and gastronomic experiences. A large number of these images are taken in restaurants. Dish recognition in general is very challenging, due to different cuisines, cooking styles, and the intrinsic difficulty of modeling food from its visual appearance. However, contextual knowledge can be crucial to improve recognition in such scenario. In particular, geocontext has been widely exploited for outdoor landmark recognition. Similarly, we exploit knowledge about menus and location of restaurants and test images. We first adapt a framework based on discarding unlikely categories located far from the test image. Then, we reformulate the problem using a probabilistic model connecting dishes, restaurants, and locations. We apply that model in three different tasks: dish recognition, restaurant recognition, and location refinement. Experiments on six datasets show that by integrating multiple evidences (visual, location, and external knowledge) our system can boost the performance in all tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ HJX2017 Serial 2965  
Permanent link to this record
 

 
Author Pau Rodriguez; Diego Velazquez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Pay attention to the activations: a modular attention mechanism for fine-grained image recognition Type Journal Article
  Year 2020 Publication IEEE Transactions on Multimedia Abbreviated Journal (up) TMM  
  Volume 22 Issue 2 Pages 502-514  
  Keywords  
  Abstract Fine-grained image recognition is central to many multimedia tasks such as search, retrieval, and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. This issue is mainly due to changes in deformation, pose, and the presence of clutter. In the literature, attention has been one of the most successful strategies to handle the aforementioned problems. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.119; 600.098 Approved no  
  Call Number Admin @ si @ RVC2020a Serial 3417  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (up) TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Anjan Dutta; Hichem Sahbi edit   pdf
doi  openurl
  Title Stochastic Graphlet Embedding Type Journal Article
  Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (up) TNNLS  
  Volume Issue Pages 1-14  
  Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality  
  Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DuS2018 Serial 3225  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (up) TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Yunchao Gong; Svetlana Lazebnik edit   pdf
doi  openurl
  Title Asymmetric Distances for Binary Embeddings Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 36 Issue 1 Pages 33-47  
  Keywords  
  Abstract In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH), PCA Embedding (PCAE), PCA Embedding with random rotations (PCAE-RR), and PCA Embedding with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 605.203; 600.077 Approved no  
  Call Number Admin @ si @ GPG2014 Serial 2272  
Permanent link to this record
 

 
Author E. Provenzi; Carlo Gatta; M. Fierro; A. Rizzi edit  openurl
  Title A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Constant Type Journal
  Year 2008 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 30 Issue 10 Pages 1757–1770  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ PGF2008 Serial 1001  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 36 Issue 12 Pages 2367-2380  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014b Serial 2436  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Ernest Valveny; Salvatore Tabbone edit  doi
openurl 
  Title Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework Type Journal Article
  Year 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 31 Issue 9 Pages 1630–1644  
  Keywords  
  Abstract The combination of the output of classifiers has been one of the strategies used to improve classification rates in general purpose classification systems. Some of the most common approaches can be explained using the Bayes' formula. In this paper, we tackle the problem of the combination of classifiers using a non-Bayesian probabilistic framework. This approach permits us to derive two linear combination rules that minimize misclassification rates under some constraints on the distribution of classifiers. In order to show the validity of this approach we have compared it with other popular combination rules from a theoretical viewpoint using a synthetic data set, and experimentally using two standard databases: the MNIST handwritten digit database and the GREC symbol database. Results on the synthetic data set show the validity of the theoretical approach. Indeed, results on real data show that the proposed methods outperform other common combination schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RVT2009 Serial 1220  
Permanent link to this record
 

 
Author Oriol Pujol; David Masip edit  doi
openurl 
  Title Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary Type Journal Article
  Year 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 31 Issue 6 Pages 1140–1146  
  Keywords  
  Abstract This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ PuM2009 Serial 1252  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title On the Decoding Process in Ternary Error-Correcting Output Codes Type Journal Article
  Year 2010 Publication IEEE on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 32 Issue 1 Pages 120–134  
  Keywords  
  Abstract A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-correcting output codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a ldquodo not carerdquo symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI machine learning repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010b Serial 1277  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez; Angel Sappa; Thorsten Graf edit   pdf
url  doi
openurl 
  Title Survey on Pedestrian Detection for Advanced Driver Assistance Systems Type Journal Article
  Year 2010 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal (up) TPAMI  
  Volume 32 Issue 7 Pages 1239–1258  
  Keywords ADAS, pedestrian detection, on-board vision, survey  
  Abstract Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals one-after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis on the future needs and challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GLS2010 Serial 1340  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: