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Asymmetric Distances for Binary Embeddings
Albert Gordo, Florent Perronnin, Yunchao Gong, Svetlana Lazebnik

Abstract—In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data

compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been

noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query

still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances

which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive

Binary Codes (LSBC), Spectral Hashing (SH), PCA Embedding (PCAE), PCA Embedding with random rotations (PCAE-RR),

and PCA Embedding with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M

images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming

distance for all binary embedding techniques.

Index Terms—Large-scale retrieval, binary codes, asymmetric distances.

✦

1 INTRODUCTION

R Ecently, the computer vision community has wit-
nessed an explosion in the scale of the datasets it

has had to handle. While standard image benchmarks
such as PASCAL VOC [2] or CalTech 101 [3] used to
contain only a few thousand images, resources such
as ImageNet [4] (14 million images) and Tiny images
[5] (80 million images) are now available. In parallel,
more and more sophisticated image descriptors have
been proposed including the GIST [6], the bag-of-
visual-words (BOV) histogram [7], [8], the Fisher vec-
tor (FV) [9], [10] or the Vector of Locally Aggregated
Descriptors (VLAD) [11]. Descriptors with thousands
or tens of thousands of dimensions have become
the norm rather than the exception. Consequently,
handling these gigantic quantities of data has become
a challenge on its own.

When dealing with large amounts of data, there
are two considerations of paramount importance. The
first one is the computational cost: the computation of
the distance between two image signatures should
rely on efficient operations. The second one is the
memory cost: the memory footprint of the objects
should be small enough so that all database image
signatures fit in RAM. If this is not the case, i.e. if a
significant portion of the database signatures has to
be stored on disk, then the response time of a query
collapses because the disk access is much slower than
that of RAM access.

• A. Gordo is with the Computer Vision Center, Universitat Autònoma
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These considerations have directly motivated re-
search on image descriptor compression and espe-
cially on learning compact binary codes [12], [13], [14],
[15], [16], [11], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30]. A desirable property of
such coding schemes is that they should map similar
data points (with respect to a given metric such as the
Euclidean distance) to similar binary vectors (i.e. vec-
tors with a small Hamming distance). Transforming
high-dimensional real-valued image descriptors into
compact binary codes directly addresses both memory
and computational problems. First the compression
enables to store a large number of codes in RAM.
Second, the Hamming distance is extremely efficient
to compute in hardware, which enables the exhaustive
computation of millions of distances per second, even
on a single CPU.

However, it has been noted that compressing the
query signature is not mandatory [31], [32], [17].
Indeed, the additional cost of storing in memory a
single non-binarized signature is negligible. Also, the
distance between an original signature and a com-
pressed signature can still be computed efficiently
through look-up table operations. As the distance is
computed between two different spaces, these algo-
rithms are referred to as asymmetric. A major benefit
of asymmetric algorithms is that they can achieve
higher accuracy for a fixed compression rate because
they take advantage of the more precise position
information of the query. We note however that the
asymmetric algorithms presented in [31], [32], [17] are
tied to specific compression schemes. Dong et al. [31]
presented an asymmetric algorithm for compression
schemes based on random projections. Jégou et al. [32]
proposed an asymmetric algorithm for compression
schemes based on vector quantization. Brandt [17]
subsequently used a similar idea.

In this work, we show that the notion of asym-
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metric distances can be applied very broadly. We first
provide an overview of several binary embedding al-
gorithms (including Locality Sensitive Hashing (LSH)
[12], [13], Locality-Sensitive Binary Codes (LSBC) [14],
Spectral Hashing (SH) [15], PCA Embedding (PCAE)
[1], [22], PCAE with random rotations (PCAE-RR),
and PCAE with iterative quantization (PCAE-ITQ)
[22]) showing that they can be decomposed into two
steps: i) the signatures are first embedded in an in-
termediate real-valued space and ii) thresholding is
performed in this space to obtain binary outputs. A
key insight that our asymmetric distances will exploit
is that the Euclidean distance is a “natural metric” in
the intermediate real-valued space, i.e. the Euclidean
distance in the intermediate space approximates the
metric/kernel in the original space.

Building on the previous analysis we propose two
asymmetric distances which can be broadly applied
to binary embedding algorithms. The first one is an
expectation-based technique inspired by Jégou et al.
[32]. The second one is a lower-bound-based tech-
nique inspired by Dong et al. [31].

We show experimentally on four datasets of differ-
ent nature that the proposed asymmetric distances
consistently and significantly improve the retrieval
accuracy of LSH, LSBC, SH, PCAE, PCAE-RR, and
PCAE-ITQ over the symmetric Hamming distance.
Although the lower-bound and expectation-based
techniques are very different in nature, they are
shown to yield very similar improvements.

The remainder of this article is organized as follows.
In the next section, we provide an analysis of several
binary embedding techniques. In section 3 we build
on the previous analysis to propose two asymmetric
distance computation algorithms for binary embed-
dings. In section 4 we provide experimental results.
Finally in section 5 we discuss conclusions and direc-
tions for future work.

2 BACKGROUND ON BINARY EMBEDDINGS

We now provide a review of several successful bi-
nary embedding techniques: LSH, LSBC, SH, PCAE,
PCAE-RR, and PCAE-ITQ. Let us introduce a set of
notations. Let x be an image signature in a space Ω
and let hk be a binary embedding function, i.e. hk :
Ω → {0, 1} (some authors prefer the convention hk :
Ω → {−1,+1}). A set H = {hk, k = 1 . . .K} of K func-
tions defines a multi-dimensional embedding function
h : Ω → {0, 1}K with h(x) = [h1(x), . . . , hK(x)]′ (and
the apostrophe denotes the transpose).

We show that for LSH, LSBC, SH, PCAE, PCAE-RR,
and PCAE-ITQ, the functions hk can be decomposed
as follows:

hk(x) = qk[gk(x)], (1)

where gk : Ω → R is the real-valued embedding
function, and qk : R → {0, 1} is the binarization
function. We denote g : Ω → R

K with g(x) =

[g1(x), . . . , gK(x)]′. If we have two image signatures
x and y, we also show that the Euclidean distance is
the natural metric between g(x) and g(y) and that it
approximates the original distance between x and y.
Thus, we can write the squared Euclidean distance as
d(x, y) ≈ d(g(x), g(y)) =

∑

k d(gk(x), gk(y)).
In the rest of this section, we survey a number

of binary embeddings, which can be classified into
two types: those based on random projections (LSH
and LSBC), and those based on learning the hashing
functions (PCAE, PCAE-RR, PCAE-ITQ, or SH).

2.1 Hashing with Random Projections

2.1.1 Locality Sensitive Hashing (LSH)

In LSH, the functions hk are called hash functions and
are selected to approximate a similarity function sim
in the original space Ω ∈ R

D . Valid hash functions hk

must satisfy the LSH property:

Pr [hk(x) = hk(y)] = sim(x, y). (2)

Here we focus on the case where sim is the cosine
similarity sim(x, y) = 1 − θ(x,y)

π , for which a suitable
hash function 1 is [13]:

hk(x) = σ (r′kx) , (3)

with

σ(u) =

{

0 if u < 0,

1 if u ≥ 0.
(4)

The vectors rk ∈ R
D are drawn from a multi-

dimensional Gaussian distribution p with zero mean
and identity covariance matrix ID . We therefore have
qk(u) = σ(u) and gk(x) = r′kx. In such a case the
natural distance between g(x) and g(y) in the inter-
mediate space is the Euclidean distance as random
Gaussian projections preserve the Euclidean distance
in expectation. This property stems from the equality:

Er∼p

[

||r′x− r′y||2
]

= ||x− y||2. (5)

We note that centering the data around the origin
can impact LSH very positively, especially when deal-
ing with non-negative data such as GIST vectors [6].
This is because, given a set of points {xi, i = 1 . . .N}
with zero-mean and a random direction rk, we have
the guarantee that 1

N

∑N
i=1 r

′
kxi = r′k(

1
N

∑N
i=1 xi) = 0,

i.e. the distribution of values r′kxi is centered around
the LSH binarization threshold. If the data is not
centered around the origin, the mean of the r′kxi

values can be very different from zero. We have
observed cases where the projections all had the same

1. In the general LSH case, each hashing function hk can take
more than two values. Here, since we are interested in binary
compression, we focus on the binary case. Therefore, in what
follows, what we refer to as LSH should be understood as the
binary version of LSH.
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sign, leading to weakly discriminative embedding
functions 2.

The previous analysis can be readily extended to the
Kernelized LSH approach of Kulis and Grauman [16]
as the Mercer kernel between two objects is just a dot-
product in another space using a non-linear mapping
φ(x) of the input vectors. This enables one to extend
LSH as well as the asymmetric distance computations
beyond vectorial representations.

2.1.2 Locality-Sensitive Binary Codes (LSBC)

Consider a Mercer kernel k : R
D × R

D → R that
satisfies the following properties for all points x and
y:

1) It is translation invariant, i.e. there exists k :
R

D → R such that k(x, y) = k(x− y).
2) It is normalized: i.e., k(x− y) ≤ 1 and k(0) = 1.
3) ∀α ∈ R : α ≥ 1, k(αx− αy) ≤ k(x, y).

Two well known examples are the Gaussian and
Laplacian kernels. Raginsky and Lazebnik [14]
showed that for such kernels, k(x, y) can be approxi-
mated by 1− 2Ha(h(x), h(y))/K where Ha() denotes
the Hamming distance and hk(x) = qk(gk(x)) with:

gk(x) = cos(r′kx+ bk), (6)

qk(u) = σ(u− tk). (7)

bk and tk are random values drawn respectively from
unif[0, 2π] and unif[−1,+1], and K is the number of
bits. The vectors rk are drawn from a distribution
pk which depends on the particular choice of the
kernel k. For instance, if k is the Gaussian kernel
with bandwidth γ then pk is a Gaussian distribution
with mean zero and covariance matrix γID where ID
is the D × D identity matrix. As the number of bits
K increases, 1 − 2Ha(h(x), h(y))/K is guaranteed to
converge to k(x, y).

We know from Rahimi and Recht [33] that
g(x)′g(y) is guaranteed to converge to k(x, y) since
Ewk∼pK

gk(x)gk(y) = k(x, y) and therefore that the em-
bedding g preserves the dot-product in expectation.
Since k(x, x) = k(x− x) = k(0) = 1, the norm ||g(x)||2
is also guaranteed to converge to 1, ∀x. In that case,
||g(x) − g(y)||2 = ||g(x)||2 + ||g(y)||2 − 2g(x)′g(y) =
2(1 − g(x)′g(y)). Therefore the Euclidean distance
is equivalent to the dot-product and the Euclidean
distance is preserved in the intermediate space in
expectation.

2.2 Learning Hashing Functions

Hashing methods based on random projections such
as LSH and LSBC have important properties, such
as the guarantee to converge to the target kernel
when the number of bits grows to infinity. However,

2. An alternative would be to choose a per-dimension threshold
equal to the median of the r′

k
xi values. However, this would not

guarantee anymore the convergence to the cosine.

a large number of bits may be necessary to obtain
a sufficiently good approximation. When aiming at
short codes, it may be more fruitful to learn the
hashing functions rather than to resort to randomness.

We will focus on unsupervised code learning tech-
niques, and especially on those based on PCA, since
PCA seems to be a core component of the best-
performing binary embedding methods: in Product
Quantization [32] and Transform Coding [17], PCA
is used as a preliminary step before binarizing the
data. In [1] and [22], a direct PCA embedding is used.
Spectral Hashing [15] can be understood as a way to
assign more bits to the PCA dimensions with more
energy. In the following, let S = {xi, i = 1 . . .N}, be
a set of N signatures in Ω ∈ R

D that are available for
training purposes.

2.2.1 PCA Embedding (PCAE)

A very simple encoding technique is PCA embedding
(PCAE) [22][1]. We can define PCAE as hk(x) =
qk(gk(x)), with

gk(x) = w′
k(x− µ), (8)

qk(u) = σ(u), (9)

where µ is the mean of the signatures of S, µ =
1
N

∑N
i=1 xi, and where wk is the eigenvector associated

with the k-th largest eigenvalue of the covariance
matrix of the signatures of S. Despite its simplicity,
PCAE can obtain very competitive results as will be
shown in the experiments of Section 4.

According to [15], when producing binary codes,
two desirable properties are: i) that the bits are pair-
wise uncorrelated, and ii) that the variance of each
bit is maximized. As seen in [18], this leads to an
NP hard problem that needs to be relaxed to be
solved efficiently. The analysis of [18] also shows that
projecting the data with PCA is an optimal solution of
the relaxed version of this problem, conferring some
theoretical soundness to PCAE.

In the case of PCAE, the Euclidean distance is the
natural distance in the intermediate space, since PCA
projections preserve, approximately, the Euclidean
distance (the PCA directions are those that minimize
the mean squared reconstruction error). A possible
drawback of PCA projections for binarization is that
not all the dimensions contain the same energy after
the projection. Since, after thresholding, all bits have
the same weight, it can be important to balance the
variance before quantizing the vectors.

One possible solution is to rotate the projected
data. This rotation can be random, such as in PCAE-
RR (Section 2.2.2), or learned, such as in PCAE-ITQ
(Section 2.2.3). Another option is to assign more bits
to the more relevant dimensions. In practice, Spectral
Hashing (Section 2.2.4) can be seen as a way to achieve
this goal, even though its theoretical foundations are
different.
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2.2.2 PCAE + Random Rotations (PCAE-RR)

As noted in [32],[22], one simple way to balance
the variances is to project the data with the PCA
projections and then rotate the result with a random
orthogonal matrix R ∈ R

K×K (or, equivalently, if we
put the column eigenvectors in a matrix W ∈ R

D×K ,
to project and rotate the data at the same time with a
matrix W̃ = WR). One way to generate this random
orthogonal matrix is to first create a random matrix
drawn from a N (0, 1) distribution and perform a QR
decomposition, as done in [34]. Another option is to
perform an SVD decomposition of such matrix, as
done in [22]. We follow the latter approach.

Therefore, the PCAE-RR embedding can be defined
as hk(x) = qk(gk(x)), with

gk(x) = w̃′
k(x− µ), (10)

qk(u) = σ(u), (11)

where w̃k is the k-th column of W̃ . Note that rotating
the data with an orthogonal matrix after the PCA pro-
jection is still an optimal solution of the formulation
of [18]. Also, since orthogonal rotations preserve the
Euclidean distance – already approximately preserved
after PCA – the natural distance in the intermediate
space for PCAE-RR is also the Euclidean distance.

2.2.3 PCAE + Iterative Quantization (PCAE-ITQ)

In [22], the idea of rotating the projections to balance
the variances after PCA is taken a step further. The
goal is to find the optimal orthogonal rotation R that
minimizes the quantization loss in a training set:

argmin
R

∑

x∈S
||q(g(x)) − g(x)||2, (12)

with

gk(x) = w̃′
k(x− µ), (13)

qk(u) = 2σ(u)− 1, (14)

and, as before, w̃k = (WR)k.
Intuitively, the goal is to map the points into the

vertices of a binary hypercube. The closer the points
are to the vertices, the smaller the quantization error
will be. This optimization problem is related to the
Orthogonal Procrustes problem [35], in which one
tries to find an orthogonal rotation to align one set of
points with another. The optimization can be solved
iteratively, and involves computing an SVD decompo-
sition of a K×K matrix at every iteration. A random
orthogonal matrix is used as initial values of this ma-
trix. Since we are usually interested in compact codes
(e.g., K ≤ 512), obtaining the orthogonal rotation
matrix R is quite fast. Note also that this optimization
has to be computed only once, offline.

As in the case of PCAE-RR, we perform an orthog-
onal rotation after the PCA projection, and so the
Euclidean distance is approximately preserved in the
intermediate space.

2.2.4 Spectral Hashing (SH)

Given a similarity sim between objects in Ω ∈ R
D, and

assuming that the distribution of objects in Ω may be
described by a probability density function p, SH [15]
attempts to minimize the following objective function
with respect to h:

∫

x,y

||h(x)− h(y)||2sim(x, y)p(x)p(y)dxdy, (15)

subject to a set of constraints. As the constrained
problem is NP hard Weiss et al. propose to optimize
a relaxed version of their problem, i.e. to remove the
constraints and then to binarize the real-valued output
at 0. This is equivalent to minimizing:

∫

x,y

||g(x)− g(y)||2sim(x, y)p(x)p(y)dxdy, (16)

with respect to g and then writing h(x) = 2σ(g(x))−1,
i.e. q(u) = 2σ(u) − 1. The solutions to the relaxed
problem are eigenfunctions of the weighted Laplace-
Beltrami operators for which there exists a closed-
form formula in certain cases, e.g. when sim is the
Gaussian kernel and p is separable and uniform. To
satisfy, at least approximately, the separability condi-
tion, PCA is first performed on the input vectors.

When minimizing the SH objective function (16),
we learn a function g which enforces points (x, y)
which have a large sim(x, y) to have a low Euclidean
distance ||g(x)−g(y)||2. This shows that the Euclidean
distance makes sense in the intermediate space.

3 ASYMMETRIC DISTANCES

In the previous section we decomposed several binary
embedding functions hk into real-valued embedding
functions gk and quantization functions qk. Let d
denote the squared Euclidean distance 3. We also
showed that:

d(g(x), g(y)) =
∑

k

d(gk(x), gk(y)). (17)

is a natural distance in the intermediate space. We
now propose two approximations of the quantity (17).
In the following, x is assumed non-binarized, i.e. we
have access to the values gk(x) (and therefore also to
hk(x)), while y is binarized, i.e. we only have access
to the values hk(y) (but not to gk(y)).

3.1 Expectation-Based Asymmetric Distance

In [32] Jégou et al. proposed an asymmetric algorithm
for compression schemes based on vector quantiza-
tion. A codebook is learned through k-means cluster-
ing and a database vector is encoded by the index
of its closest centroid in the codebook. The distance

3. We use the following abuse of notation for simplicity: d

denotes both the distance between the vectors g(x) and g(y), i.e.
d : R

K
× R

K
→ R, and the distance between the individual

dimensions, i.e. d : R× R → R.
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between the uncompressed query and a quantized
database signature is simply computed as the Eu-
clidean distance between the query and the corre-
sponding centroid.

We now adapt this idea to binary embeddings. We
note that in the case of LSH, LSBC, SH, or PCAE we
have no notion of centroid. However, we note that
the centroid of a given cell in k-means clustering can
be interpreted as the expected value of the vectors
assigned to this particular cell. Similarly, we propose
an asymmetric expectation-based approximation dE
for binary embeddings.

Assuming that the samples in the original space Ω
are drawn from a distribution p, we define:

dE(x, y) =
∑

k

d(gk(x),Eu∼p[gk(u)|hk(u) = hk(y)]). (18)

d(gk(x),Eu∼p[gk(u)|hk(u) = hk(y)]) is the distance in
the intermediate space between gk(x) and the ex-
pected value of the samples gk(u) such that hk(u) =
hk(y).

Since we generally do not have access to the dis-
tribution p, the expectation operator is approximated
by a sample average. In practice, we randomly draw
a set of signatures S = {xi, i = 1 . . .N} from Ω. For
each dimension k of the embedding, we partition S
into two subsets: S0

k contains the signatures xi such
that hk(xi) = 0 and S1

k those signatures xi that satisfy
hk(xi) = 1. We compute offline the following query-
independent values (see Fig. 1):

α0
k =

1

|S0
k |

∑

u∈S0
k

gk(u), (19)

α1
k =

1

|S1
k |

∑

u∈S1
k

gk(u). (20)

Online, for a given query x, we first pre-compute and
store in look-up tables the following query-dependent
values:

β0
k = d(gk(x), α

0
k) = (gk(x) − α0

k)
2, (21)

β1
k = d(gk(x), α

1
k) = (gk(x) − α1

k)
2. (22)

By definition, we have:

dE(x, y) =
∑

k

β
hk(y)
k . (23)

The cost of pre-computing the β values is negligible
with respect to the cost of computing many dE(x, y)’s
for a large number of database signatures y. The sum
(23) can be computed very efficently by grouping the
dimensions. In our implementation, we subdivide a
vector into blocks of 8 dimensions and write (assum-
ing that the number of dimensions K is a multiple of
8, to simplify the notation):

dE(x, y) =

K/8−1
∑

k=0

8
∑

j=1

β
h8k+j(y)
8k+j . (24)

tk

gk

distribution

S0

k
S1

k
− +

α0

k
α1

k

Figure 1. Expectation-based asymmetric distance.

Graphical interpretation of the αk coefficients of equa-
tions (19) and (20).

Because the binary subvector [h8k+1(y), . . . , h8k+8(y)]

fits in 1 byte, each sum
∑8

j=1 β
h8k+j(y)
8k+j can only take

256 possible values. We can pre-compute these 256
values and store them in a look-up table. Performing
K/8 accesses to 256-dimensional look-up tables is
faste than performing K accesses to 2-dimensional
look-up tables. This also reduces the number of sum-
mations performed online by a factor of 8.

3.2 Lower-Bound Based Asymmetric Distance

In [31], Dong et al. proposed an asymmetric algorithm
for binary embeddings based on random projections.
We now show that a similar approach can be ap-
plied to a much wider range of binary embedding
techniques. For the simplicity of the presentation, we
assume that qk has the form qk(u) = σ(u − tk) where
tk is a threshold but this can be trivially generalized
to other quantization functions.

The idea is to lower-bound the quantity (17) by
bounding each of its terms. We note that tk splits R

into two half-lines and consider two cases:

• If hk(x) 6= hk(y), i.e. gk(x) and gk(y) are on
different sides of tk, then a lower-bound between
gk(x) and gk(y) is the distance between gk(x) and
the threshold tk, i.e. d(gk(x), gk(y)) ≥ d(gk(x), tk).

• If hk(x) = hk(y), i.e. gk(x) and gk(y) are on the
same half-line, then we have the following ob-
vious lower-bound: d(gk(x), gk(y)) ≥ 0 (actually,
this bound is always true).

Merging the two cases in a single equation, we have
the following lower-bound on d(g(x), g(y)):

dLB(x, y) =
∑

k

δ̄hk(x),hk(y)d(gk(x), tk), (25)

where δ̄i,j is the negation of the Kronecker delta, i.e.
δ̄i,j = 0 if i = j and 1 otherwise. We note that, in
the case of LSH, equation (25) is equivalent to the
asymmetric LSH distance proposed in [31].

In practice, for a given query signature x, we can
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tk

γ0

k
= d(gk(x), tk)

hk(y) = 0

− +

gk(x)

tk

hk(y) = 1

γ1

k
= 0

− +

gk(x)

Figure 2. Lower-bound-based asymmetric distance.

Top: case where hk(x) 6= hk(y), and therefore

d(gk(x), gk(y)) ≥ d(gk(x), tk). Bottom: case where
hk(x) = hk(y), and therefore d(gk(x), gk(y)) ≥ 0.

pre-compute online the values (see Fig. 2):

γ0
k = δ̄hk(x),0d(gk(x), tk) = δ̄hk(x),0(gk(x)− tk)

2, (26)

γ1
k = δ̄hk(x),1d(gk(x), tk) = δ̄hk(x),1(gk(x)− tk)

2. (27)

We note that one of these two values is guaranteed to
be 0 for each dimension k. By definition we have:

dLB(x, y) =
∑

k

γ
hk(y)
k . (28)

We can subsequently pack these values by blocks of
8 dimensions for faster computation as was the case
of the expectation-based approximation.

A major difference between dE and dLB is that the
former one makes use of the data distribution while
the latter one does not. Despite its very crude nature,
we will see that dLB leads to excellent results on a
variety of binary embedding algorithms.

3.3 Variance Preservation

In what follows, we make the assumption that the
distribution of the real-valued embedding in dimen-
sion i (i.e. the distribution of gi(x))) is a Gaussian pi
with mean 0 and variance σ2

i . We assume that the
dimensions are ordered such that σi > σi+1. Accord-
ing to information theory, the amount of information
carried by dimension i, which can be measured by the
entropy of pi, is proportional to log(σi). Therefore, a
natural strategy in source coding is to allocate to each
dimension a number of bits which is proportional to
this number. Two strategies have been proposed for
this purpose: either to allocate a variable number of
bits per dimension [17] or to equalize the variance
[34], [22] and to keep the same number of bits to
each dimension (typically 1 bit per dimension). If
we do not equalize the variance and allocate a fixed

number of bits per dimension, then less informative
dimensions are given the same weight as more in-
formative dimensions when computing a Hamming
distance which leads to suboptimal results. However,
asymmetric distances do not suffer from this problem.
Indeed, we now show that the asymmetric distance in
each dimension is proportional in expectation to the
variance of the data, thus showing that more weight
is given to more informative dimensions.

a) dE case: In a given dimension i, the expectation
of the positive samples is the expectation of a half-
normal distribution

E =

∫ ∞

0

xpi(x)dx =
σi√
2π

and the expectation of the negative samples is −E =
− σi√

2π
. These values correspond to the α’s of equations

(19) and (20). Consequently, the expectation of the
distance to these values (i.e. the expectation of the β’s
of equations (21) and (22)) is:

∫ +∞

−∞
(x− (±E))2pi(x)dx = σ2

i (1 +
1

2π
). (29)

Therefore in expectation the contribution of a given
dimension to the asymmetric distance is proportional
to the variance in this dimension.

b) dLB case: Let us consider the case where hk(x) =
1 and hk(y) = 0. The other relevant case can be treated
analogously. The expectations of the γ’s (cf . equations
(26) and (27)) in dimension i are equal to

∫ 0

−∞
0 pi(x)dx +

∫ +∞

0

x2pi(x)dx =
σ2
i

2
.

Again, in expectation, the contributions of the dimen-
sions to the asymmetric distance decrease with the
index i.

As mentioned earlier, this analysis is only valid in
the case where the distribution of the real valued
embeddings is Gaussian in each dimension and has
mean zero. This assumption is reasonable in the case
of PCAE since the assumption underlying PCA is
that the data distribution is Gaussian and since after
projection the data is zero-centered (see Figure 3
top). This may explain, at least partly, the significant
improvements of asymmetric distances for PCAE (see,
e.g., the results on CIFAR in Figures 4c-6c). On the
other hand, the Gaussian assumption does not seem
to be valid for LSBC (see Figure 3 bottom) because of
the cosine non-linearity.

4 EXPERIMENTS

We now show the benefits of the asymmetric distances
proposed in section 3 on the binary embeddings we
reviewed in section 2. We first describe in Section 4.1
the four public benchmarks we experiment on. We
then provide in Section 4.2 implementation details for
the different embedding algorithms. We finally report
and discuss results in Section 4.3.
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Figure 3. Histograms of the projected values of the
60,000 CIFAR images. Top: projected on the first two

PCA dimensions. Bottom: projected with two random

LSBC dimensions.

4.1 Datasets and Features

We run experiments on two category-level re-
trieval benchmarks, CIFAR and Caltech256, and two
instance-level retrieval benchmarks, the University of
Kentucky Benchmark (UKB) and INRIA Holidays.
This diverse selection of datasets allows us to exper-
iment with different setups. On CIFAR, we evaluate
both semantic retrieval and retrieval using Euclidean
neighbors as ground truth. On Caltech256, we eval-
uate the effect of different descriptors on the results:
GIST, Bag of Words and Fisher Vector. UKB and Hol-
idays are standard instance-level retrieval datasets.
As opposed to CIFAR or Caltech256, the number of
relevant items per query is much smaller, always 4 for
UKB and from 2 to 10 for Holidays. We now describe
these datasets as well as the associated standard ex-
perimental protocols in detail.

CIFAR. The CIFAR dataset [36] is a subset of the
Tiny Images dataset [5]. We use the same version of
CIFAR that was used in [22]. It contains 64,184 images
of size 32 × 32 that have been manually grouped
into 11 ground truth classes. Images are described
using a greyscale GIST descriptors [6] computed at
3 different scales (8, 8, 4) producing a 320-dim vector.
1,000 images are used as queries, 5,000 are used for
unsupervised training purposes, and the remaining
images are use as database images.

We report results on two different problems.

• Euclidean neighbor retrieval: we discard the class
labels and measure the preservation of Euclidean
neighbors. We used two types of grountd truth.
In the first case, we used as ground truth neigh-
bors for a given point all those other points
which are within an ǫ-ball. Following [22], we
use as threshold ǫ the average distance to the
50th nearest neighbor. We note that the number
of true positives varies widely from one query

to another (from 0 to 2,353). We compute the
Average Precision (AP) for each query (with a
non-zero number of true positives) and report the
mean over the 1,000 queries (Mean AP or MAP).
In what follows, these experiments are referred to
as “Euclidean ǫ-NN”. In the second case, we used
as ground truth neighbors the k nearest neighbors
of each query, i.e., all queries have the same
number of true positives. For each query, we
compute the Normalized Discounted Cumulative
Gain at k (NDCG@k) and report the average over
the queries. The relevance of each true neighbor
decreases linearly from 1 (the closest neighbor)
to 1/k (the k-th, less relevant neigbor). We exper-
imented with different values of k and did not
observe any significant difference in the shapes
of the plots. Therefore, we only report results
for k = 1, 000 neighbors. In what follows, these
experiments are referred to as “Euclidean k-NN”.

• Semantic retrieval: we use the class labels as
ground truth and report the precision at 1.

Caltech256. The Caltech256 dataset [37] contains
approximately 30,000 images grouped in 257 classes.
Through our experiments, we use only 256 classes and
we discard the “clutter” class. As in CIFAR, we split
the dataset in three different sets. We select 5 images
per class (1,280 images in total) to serve as queries,
and 5,000 random images to serve as unsupervised
training data. The remaining images are used as the
database. We describe the images and report precision
at 1 using 3 different descriptors:

• GIST descriptors with 320 dimensions (same con-
figuration as in CIFAR).

• Bag of Visual Words (BOV) [7], [8] with 1,024
visual words on SIFT descriptors [38].

• Fisher Vectors (FV) [9], [10], which were shown
to yield excellent results for object and scene
retrieval [39], [11]. We compute 4,096-dim FVs on
SIFT descriptors as is the case of the BOV.

UKB. The University of Kentucky Benchmark
(UKB) [40] contains 10,200 images of 2,550 objects
(4 images per object). Each image is used in turn as
query to search through the 10,200 images. The accu-
racy is measured in terms of the number of relevant
images retrieved in the top 4, i.e. 4 × recall@4. We use
the same low-level feature detection and description
procedure as in [34]. As in Caltech256, we use 4,096-
dim FV representations. For all learning purposes (e.g.
to learn the visual vocabulary for the FV), we use
an additional set of 60,000 images (Flickr60K) made
available by the authors of [34].

Holidays. The INRIA Holidays dataset [34] contains
1,491 images of 500 scenes and objects. The first image
of each scene is used as query to search through the
remaining 1,490 images. We measure the accuracy for
each query using AP and report the MAP over the
500 queries. As was the case for UKB, images are
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described using 4,096-dim FVs, using the same low-
level feature detection and description procedure, as
well as the same Flickr learning set.

4.2 Implementation Details

To learn the parameters of the embedding functions
and to compute offline the α values for dE we need
training data. For CIFAR and Caltech256, we will use
the 5, 000 training samples, that are used neither as
queries nor as database items. For UKB and Holidays
we use the Flickr60K dataset [34].

For CIFAR and Caltech256, where no predefined
partitions exist, we repeated the experiments 3 times
using different queries and database partitions and
averaged the results.

For LSH and LSBC, which perform binarization
through random projections, as well as for PCAE-RR
and PCAE-ITQ, which use random rotations, experi-
ments are repeated 5 times with 5 different projection
matrices and we report the average results.

As discussed in section 2.1.1, mean-centering the
data can impact LSH positively. Therefore, we have
mean-centered the GIST and BOV descriptors for
CIFAR and Caltech256, learning the means on their
respective training sets. By definition FVs are already
(approximately) mean-centered. We note that center-
ing the data on the origin does not impact PCAE,
PCAE-RR, PCAE-ITQ, and SH (which perform PCA
of the signatures) or LSBC (which is shift-invariant).

4.3 Results and Analysis

We report results on the four datasets in Figures 4 -
11 with the symmetric Hamming distance as well as
with the proposed asymmetric distances dE and dLB .
The following is a detailed discussion of our findings.

Asymmetric vs symmetric. Asymmetric distances
consistently improve the results over the symmetric
Hamming distance, independently of the dataset, of
the descriptor used, and of the binary embedding
technique. In general, the gain in accuracy is im-
pressive both in terms of absolute and relative im-
provement. Here are just two examples: on CIFAR
with semantic labels (Figure 6), when using PCAE,
we observe an improvement of 8% absolute and 22%
relative at 128 bits. On Holidays, when using SH, we
can observe an improvement of 8% absolute and 21%
relative (Figure 11), also at 128 bits.

The GIST results on Caltech256 (Figure 7) are an
exception to this rule, especially for those compression
algorithms which involve PCA such as PCAE and
SH. Indeed, in this setting the simpler Hamming
distance can outperform the proposed asymmetric
distances. This seems to indicate that the Euclidean
distance we are trying to approximate in the PCA
space is suboptimal (at least on this dataset and with
these features) and that the Hamming distance in the
projected space approximates a better metric.

To verify this hypothesis, we experimented with the
cosine distance in the PCA space – which is equivalent
to the Euclidean distance on ℓ2-normalized vectors –
and obtained better results than with the Euclidean
distance. For instance, without any additional bina-
rization, we obtained 12.9% accuracy when using the
Euclidean distance in a 256-dim PCA subspace and
14.0% with a cosine distance. This seems to show
that ℓ2-normalizing PCA-projected GIST descriptors
leads to improved results. To provide a tentative
explanation of the superiotiy of the cosine over the
Euclidean distance for PCA-projected GIST descrip-
tors, we refer to some the arguments of [41]. Indeed,
Jégou and Chum argue that, when comparing BOV
vectors, the presence as well as the absence of a
visual word can be informative and that the cosine in
the PCA space takes into account the absence of the
visual words while the Euclidean distance does not.
Similarly, our results seem to show that the absence of
a gradient direction in the GIST can be informative.
Having shown that, on this dataset, ℓ2-normalizing
PCA-projected GIST descriptors leads to superior re-
sults, it is not surprising that the Hamming distance
can outperform the asymmetric distances. Indeed,
the asymmetric distances attempt to approximate the
(inferior) Euclidean distance. On the other hand, the
Hamming distance can be related to the Euclidean
distance between binary vectors encoded on {−1,+1},
and since those vectors all have the same ℓ2-norm, it
can also be related to the (superior) cosine distance.

Expectation vs lower-bound. For almost all em-
bedding techniques, dE and dLB yield very similar
results, which is somewhat surprising given that the
two approximations are very different in nature. The
slight advantage of dE over dLB comes from the fact
that the former approach uses information about the
data distribution (through the pre-computed values
α) while the latter does not.

We note, however, two exceptions. The first is LSBC,
for which in most cases dE performs significantly
better than dLB (see Figures 4b, 5b, 6b, 8b, 9b, 10b,
11b). We are still investigating this difference but we
observed that the distributions of the values gk(x) in
the intermediate real-valued space for LSBC are sig-
nificantly different from those observed for the other
embedding methods (typically U- or half-U-shaped
for LSBC, as opposed to Gaussian-shaped for the
others, particularly PCAE, see Figure 3). The second
exception is on the Caltech256 with GIST descriptors
on Figure 7, where dLB usually and sometimes very
clearly outperforms dE . As we noted in the previous
point, we believe this is because the cosine distance
is a better measure of similarity than the Euclidean
distance when PCA-projected GIST descriptors.

Finally, preliminary experiments on fusing dE and
dLB yielded only marginal improvements.

Influence of the retrieval problem. In Figures 4-6
we report results on CIFAR for two different prob-
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Figure 4. Influence of the asymmetric distances on the CIFAR dataset with Euclidean ǫ-NN. The dimensionality of

PCAE, PCAE-RR and PCAE-ITQ is limited by the dimensionality of the original GIST descriptor, 320 dimensions.
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Figure 5. Influence of the asymmetric distances on the CIFAR dataset with Euclidean k-NN with k = 1, 000. The
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320 dimensions.
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Figure 6. Influence of the asymmetric distances on the CIFAR dataset with semantic labels for 6 different

encoding methods: LSH, LSBC, PCAE, PCAE-RR, PCAE-ITQ, and SH. The dimensionality of PCAE, PCAE-RR
and PCAE-ITQ is limited by the dimensionality of the original GIST descriptor, 320 dimensions.

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

LSH Ha
LSH dE
LSH dLB

(a) LSH

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

LSBC Ha
LSBC dE
LSBC dLB

(b) LSBC

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

PCAE Ha
PCAE dE
PCAE dLB

(c) PCAE

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

PCAE-RR Ha
PCAE-RR dE
PCAE-RR dLB

(d) PCAE-RR

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

PCAE-ITQ Ha
PCAE-ITQ dE
PCAE-ITQ dLB

(e) PCAE-ITQ

 0

 5

 10

 15

 16  32  64  128  256  512

P
re

ci
si

on
 a

t 1
 (

in
 %

)

Number of bits

SH Ha
SH dE
SH dLB

(f) SH

Figure 7. Influence of the asymmetric distances on the CALTECH256 dataset with GIST descriptors.
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Figure 8. Influence of the asymmetric distances on the CALTECH256 dataset using BOV descriptors.
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Figure 9. Influence of the asymmetric distances on the CALTECH256 dataset using FV descriptors.
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Figure 10. Influence of the asymmetric distances on the UKB dataset.
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Figure 11. Influence of the asymmetric distances on the Holidays dataset.
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lems: retrieval of Euclidean neighbors and semantic
retrieval. We can observe how asymmetric distances
provide similar improvements for both cases. We can
also note how, in the Euclidean problem, PCAE with
Hamming distance seems to perform poorly (Fig. 4c)
compared to the results of PCAE on other datasets,
and also how the asymmetric improvements seem
larger in this case. We believe the difference stems not
from the problem (semantic vs Euclidean retrieval)
but because of the evaluation measure: this is the only
experiment that combines, at the same time, a large
number of relevant items per query and a “global”
measure such as mAP or NDCG@1000. In such a
case, balancing the data with PCAE-RR or PCAE-
ITQ or using asymmetric distances seems to yield
a large benefit. To attest this, we experimented on
Caltech256, which has many relevant items per query.
Using BOV descriptors, we computed the mAP score
instead of the precision at 1 reported in Figure 8c.
In that case, PCAE results drastically dropped below
those of PCAE-RR and PCAE-ITQ, supporting this
idea.

Influence of the descriptor. In Figures 7 to 9 we can
observe the influence of the descriptors on Caltech256.
In general, the improvements in BOV and FV are
larger than the improvements obtained with GIST,
showing that the improvement can be dependent on
the feature type, particularly if the Euclidean distance
was not a good measure in the original space.

We can also observe how, particularly in the PCA-
based methods, FV has a slight edge over BOV when
aiming at 256 bits or more. However, BOV can obtain
better results than the FV when aiming at signatures
of 128 bits or less. This is in line with the observations
of [11], where they notice that, when producing small
codes, it is usually better to start with a smaller
image signature. In our case, the BOV has 1,024
dimensions and the FV has 4,096. When we can afford
larger codes, the FV usually still outperforms BOV:
the uncompressed BOV baseline is 22.11%, while the
uncompressed FV baseline is 24.11%.

Influence of the embedding method. All methods
benefit significantly from the asymmetric distances.
This can be easily understood: since we are not bina-
rizing the query, there is less loss of information on
the query side.

PCAE seems to benefit particularly from the asym-
metric distances (see, e.g., the results on CIFAR in
Figures 4c-6c). This may be explained by the variance-
preservation effect of the asymmetric distances (see
Section 3.3). The variance problem of the other meth-
ods is not so severe: LSH and LSBC use random
projections, and their variances are balanced in expec-
tation. PCAE-RR, PCAE-ITQ, and SH all balance the
variances, either explicitly as in PCAE-RR and PCAE-
ITQ, or implicitly, as in SH, assigning more bits to the
more important dimensions. Therefore, the impact of
the asymmetric distances on these methods is not as

pronounced, yet still sizeable. For example, on Cal-
tech256 with FV (Figure 9), we show improvements
on LSBC of about 4% absolute but almost 40% relative.

Asymmetric distances also seem to bridge the gap
between the binary encoding methods, particularly
between those based on PCA. Figure 12 compares
the different encoding methods using Hamming dis-
tances and both dE and dLB on the CIFAR semantic
problem with the same data we used for Figure 6.
The results suggest that asymmetric distances can be
used to compensate for the quality of the embedding
method; the difference between the encoding meth-
ods is significant when using the Hamming distance
(more than 10% absolute at 256 bits), but much less
pronounced when using asymmetric distances (less
than 5% absolute, again at 256 bits).

Qualitative results. Finally, Figure 13 shows qual-
itative results. We show the top 5 ranked images
for four random queries of Holidays using PCAE
with 128 bits, both for Hamming and for asymmetric
distances. The false positives have been framed in red.
We can observe how, in general, asymmetric distances
obtain better and more consistent results than the
Hamming distance.

4.4 Large-Scale Experiments

We now show that the good results achieved with
asymmetric distances scale to large datasets. For these
experiments we merge Holidays and UKB with a
set of 1M Flickr distractors made available by the
authors of [34]. We refer to these combined datasets
as Holidays+1M and UKB+1M. In both cases we use
the original queries, 500 in Holidays and 10,200 in
UKB. We experiment with PCAE, since this method
obtained results which are competitive with PCAE-RR
and PCAE-ITQ while being simpler.

Figure 14 shows the results on both datasets as a
function of the number of bits. We compare them with
Product quantization (PQ) [32] [11], since, to the best
of our knowledge, these are the best results reported
on Holidays+1M for very small operating points. For
PQ, we employ the same pipeline as [11] which is
composed of the following steps: i) PCA compression
of the signatures, ii) random orthogonal rotation of the
PCA projected signatures, iii) Product quantization
and iv) comparison using PQ’s asymmetric distances,
referred to as ADC in [11].

To fix the number of dimensions D′ in the PCA pro-
jection step of PQ, the authors minimized the mean
square error of the projection and the quantization
over a training set. We follow a different heuristic: we
set D′ to be equal to the number of output bits we are
aiming at, and assign 8 dimensions to each subquan-
tizer. We then fix the number of bits per subquantizer
to 8, since this seems to be a standard choice that
usually offers excellent results. Experimentally, we
observed this heuristic to obtain comparable or better
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(c) Asymmetric dLB distance

Figure 12. Comparison of Hamming and asymmetric distances on CIFAR with semantic labels. Same data as

in Figure 6.

(a) (b)

(c) (d)

Figure 13. Top five results of four random queries of Holidays using codes of 128 bits. First row: PCAE +
Hamming. Middle row: PCAE + asymmetric dE distance. Bottom row: PCAE + asymmetric dLB distance.

results than minimizing the mean square error, and
in most cases was the best possible configuration. As
was the case before, experiments are repeated 5 times
with different projection matrices and the results are
averaged.

We can observe how both asymmetric distances
with PCAE perform comparably to PQ on both
datasets although PCAE is simpler than PQ both from
a conceptual and an engineering standpoint. Further-
more, as opposed to PQ, the lower-bound asymmetric
distance does not require any training.

4.5 Timing

We now compare the computational costs of the sym-
metric Hamming distance and the proposed asym-
metric distances. In both cases, we used look-up table
implementations. Our experiments were run on 128-
bit signatures. Our non-optimized C++ code was run
on a single CPU of a machine with a 6-core 8439
SE AMD Opteron processor of 2.8GHz and 64GB of
RAM. The cost of computing 1M Hamming distances
was approximately 30ms. As for the cost of computing
asymmetric distances, for a given query it can be
split into the cost of computing a query-dependent
look-up table (which is independent of the number
of computed distances) plus the cost of computing



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

 0

 1

 2

 3

 16  32  64  128  256  512

4 
x 

re
ca

ll 
at

 4

Number of bits

PCAE Ha
PCAE dE
PCAE dLB
PQ

(a) UKB+1M

 0

 10

 20

 30

 40

 16  32  64  128  256  512

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
in

 %
)

Number of bits

PCAE Ha
PCAE dE
PCAE dLB
PQ

(b) Holidays+1M

Figure 14. Comparison of the proposed asymmetric
distances and PQ [11] on UKB+1M (top) and Holi-

days+1M (bottom). MAP and 4 × recall at 4 as a

function of the number of bits.

the distances. For both the expectation-based and
lower-bound-based asymmetric distances, the cost of
computing the look-up-tables was on the order of
0.06ms while the cost of 1M comparisons was ap-
proximately 30ms. Hence, we can conclude from these
experiments that, when the query must be compared
to 1M dataset items, the look-up table precomputation
can be neglected (0.2% of the total time) and both
symmetric and asymmetric distances have a similar
cost. As the number of comparisons increases, the cost
of the look-up table pre-computation becomes even
more negligible.

5 CONCLUSIONS AND FUTURE WORK

In this work, we proposed two asymmetric distances
for binary embedding techniques, i.e. distances be-
tween binarized and non-binarized signatures. We
showed their applicability to several embedding algo-
rithms: LSH, LSBC, SH, PCAE, PCAE-RR, and PCAE-
ITQ. We demonstrated on four datasets with up to
1M images that the proposed asymmetric distances
consistently, and often very significantly, improve
the retrieval accuracy over the symmetric Hamming

distance. We also showed how this asymmetric dis-
tances can achieve results comparable to state-of-the-
art methods such as PQ, while being conceptually
much simpler. The lower-bound asymmetric distance
can also be applied on datasets that have already been
binarized, with no need to perform any reencoding or
extra training.

In future work, we would be interested in investi-
gating coding techniques which would be designed
with the asymmetric distances in mind. One possible
example which was inspired to us by ITQ would
be to learn a rotation matrix which minimizes the
quantization error not between the signatures and
the binary codes, but between the signatures and the
reconstructed version of the binary codes using the
expected values.

Also, in the asymmetric expectation-based ap-
proach, we currently learn the α coefficients (Equa-
tions (19) and (20)) which minimize a reconstruction
error on the training data. It would be interesting to
understand whether we could learn these coefficients
with supervised data to optimize directly the retrieval
objective function.
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