|
Laura Igual, Xavier Perez Sala, Sergio Escalera, Cecilio Angulo, & Fernando De la Torre. (2014). Continuous Generalized Procrustes Analysis. PR - Pattern Recognition, 47(2), 659–671.
Abstract: PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.
Keywords: Procrustes analysis; 2D shape model; Continuous approach
|
|
|
Francesco Ciompi, Oriol Pujol, Carlo Gatta, Marina Alberti, Simone Balocco, Xavier Carrillo, et al. (2012). HoliMab: A Holistic Approach for Media-Adventitia Border Detection in Intravascular Ultrasound. MIA - Medical Image Analysis, 16(6), 1085–1100.
Abstract: We present a fully automatic methodology for the detection of the Media-Adventitia border (MAb) in human coronary artery in Intravascular Ultrasound (IVUS) images. A robust border detection is achieved by means of a holistic interpretation of the detection problem where the target object, i.e. the media layer, is considered as part of the whole vessel in the image and all the relationships between tissues are learnt. A fairly general framework exploiting multi-class tissue characterization as well as contextual information on the morphology and the appearance of the tissues is presented. The methodology is (i) validated through an exhaustive comparison with both Inter-observer variability on two challenging databases and (ii) compared with state-of-the-art methods for the detection of the MAb in IVUS. The obtained averaged values for the mean radial distance and the percentage of area difference are 0.211 mm and 10.1%, respectively. The applicability of the proposed methodology to clinical practice is also discussed.
Keywords: Media–Adventitia border detection; Intravascular ultrasound; Multi-Scale Stacked Sequential Learning; Error-correcting output codes; Holistic segmentation
|
|
|
Santiago Segui, Laura Igual, & Jordi Vitria. (2013). Bagged One Class Classifiers in the Presence of Outliers. IJPRAI - International Journal of Pattern Recognition and Artificial Intelligence, 27(5), 1350014–1350035.
Abstract: The problem of training classifiers only with target data arises in many applications where non-target data are too costly, difficult to obtain, or not available at all. Several one-class classification methods have been presented to solve this problem, but most of the methods are highly sensitive to the presence of outliers in the target class. Ensemble methods have therefore been proposed as a powerful way to improve the classification performance of binary/multi-class learning algorithms by introducing diversity into classifiers.
However, their application to one-class classification has been rather limited. In
this paper, we present a new ensemble method based on a non-parametric weighted bagging strategy for one-class classification, to improve accuracy in the presence of outliers. While the standard bagging strategy assumes a uniform data distribution, the method we propose here estimates a probability density based on a forest structure of the data. This assumption allows the estimation of data distribution from the computation of simple univariate and bivariate kernel densities. Experiments using original and noisy versions of 20 different datasets show that bagging ensemble methods applied to different one-class classifiers outperform base one-class classification methods. Moreover, we show that, in noisy versions of the datasets, the non-parametric weighted bagging strategy we propose outperforms the classical bagging strategy in a statistically significant way.
Keywords: One-class Classifier; Ensemble Methods; Bagging and Outliers
|
|
|
Miguel Angel Bautista, Sergio Escalera, & Oriol Pujol. (2014). On the Design of an ECOC-Compliant Genetic Algorithm. PR - Pattern Recognition, 47(2), 865–884.
Abstract: Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.
|
|
|
Miguel Reyes, Albert Clapes, Jose Ramirez, Juan R Revilla, & Sergio Escalera. (2013). Automatic Digital Biometry Analysis based on Depth Maps. COMPUTIND - Computers in Industry, 64(9), 1316–1325.
Abstract: World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.
Keywords: Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis
|
|