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The problem of training classifiers only with target data arises in many applications
where non-target data are too costly, difficult to obtain, or not available at all. Several
one-class classification methods have been presented to solve this problem, but most of

the methods are highly sensitive to the presence of outliers in the target class. Ensemble
methods have therefore been proposed as a powerful way to improve the classification
performance of binary/multi-class learning algorithms by introducing diversity into clas-
sifiers. However, their application to one-class classification has been rather limited. In

this paper, we present a new ensemble method based on a non-parametric weighted bag-
ging strategy for one-class classification, to improve accuracy in the presence of outliers.
While the standard bagging strategy assumes a uniform data distribution, the method
we propose here estimates a probability density based on a forest structure of the data.

This assumption allows the estimation of data distribution from the computation of
simple univariate and bivariate kernel densities. Experiments using original and noisy
versions of 20 different datasets show that bagging ensemble methods applied to different
one-class classifiers outperform base one-class classification methods. Moreover, we show

that, in noisy versions of the datasets, the non-parametric weighted bagging strategy we
propose outperforms the classical bagging strategy in a statistically significant way.
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1. Introduction

One-class classification is a special case of machine learning problems 1. In contrast

to conventional classification problems, one-class classification tries to distinguish

one class of data, called the target class, from all other possible data, called the

outlier class, without any information about the outlier class. The most common

strategy for one-class classification is to build a description of the target class from

a training dataset, in order to detect any sample which does not resemble the set

of training examples.

One of the main applications of one-class classification methods is outlier detec-

tion 2,3,4,5,6,7. Outliers are usually samples that have exceptionally large or small

feature values in comparison to the other target-class samples.

Another situation in which one-class classification can be applied is when one

of the classes is well defined, but the other class is undersampled and/or extremely

1
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heterogeneous. This is a classic scenario in some medical problems 8, where samples

of the healthy class have little variability and are easily obtained, while patient

samples are more difficult to obtain and their intraclass variability can be high.

Finally, one-class classification can also be useful when comparing two datasets 9.

For example, consider the case of a target class whose statistical properties change

over time in unforeseen ways. This can cause problems, since the classifier becomes

less accurate as time passes. One-class classification can be used in such a scenario

to check data stability.

There are three main approaches for solving the one-class classification problem:

density, boundary and reconstruction methods. In general terms, density methods

are used when a large number of data are available, while boundary and reconstruc-

tion methods are used when the aim is for classifiers to be learned despite there

being no large set of data. It has been shown that the methods can be applied to

heterogeneous datasets with well-defined labels and a small number of outliers in

the target class.

However, the problem of dealing with one-class classifiers on under-sampled and

contaminated datasets, i.e data with the presence of a large number of outliers or

ill-defined labels, is still a challenge. Nowadays, many real problems deal with under-

sampled and contaminated datasets. An instance of such a problem is the classifying

of healthy subjects and patients with intestinal dysfunction from the INTES dataset

of endoscopy videos, as presented by Malagelada et al. 10. In this particular case,

patients with intestinal dysfunctions are difficult to find and costly (undersampled

dataset) and furthermore, the set of patients presents a high intraclass variability

(heterogeneous class). That is why it is convenient to pose this problem as a one-

class classification problem. This real problem presents another difficulty: although

the target class (healthy subjects) is an homogeneous class, it may be contaminated

for several different reasons: 1) diagnostic test errors; 2) healthy subjects with

abnormal behavior; or 3) patients suffering from other kinds of dysfunction without

a positive diagnosis.

Ensemble methods 11 have been proposed as an effective way to improve the

performance of classifiers in two-class and multi-class settings. Such methods are

characterized by the production of a set of various classifiers that are used to classify

new samples by a voting combination rule. However, their application to one-class

classifiers has been rather limited 12,13,14.

The main strategy within ensemble methodology is to combine the output of

several classifiers by following a specific combination rule. Initially, the combination

rule for the ensemble was based solely on averaging the output of each classifier;

but more sophisticated algorithms have been proposed over recent years. Two key

issues have been identified when designing a classifier combination method 15,16:

accuracy and diversity.

Constructing a diverse ensemble in which each classifier is as different as pos-

sible, while still maintaining consistency with the training data, is known to be
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a theoretically important property of these methods 17. However, the creation of

diverse ensembles is an issue that has not been solved. Kuncheva et al. 11 noted

that ensemble methods which focus on creating diversity in heuristic ways seem

to yield very good results; however, methods that measure diversity and use that

measurement explicitly in the process of creating the ensemble, apparently do not

benefit from the same improvement.

There is neither a strict definition nor an explicit measure for diversity, but in

the literature we can find three main ways of creating diversity: the first consists

of considering a different pool of samples for each classifier in the ensemble; the

second consists of considering different subsets of features for each classifier; and

the last one consists of using different classifier methods to build each member of

the ensemble. The most popular approaches are the first and the second.

Bagging 18 is a method that is commonly adopted to generate different pools

of samples for each classifier. It trains each classifier in the ensemble with a re-

sampled version of the training set. The method is useful for unstable classifiers in

which small changes in the training set cause large changes in the estimated bound-

ary 19. Weighted bagging 13 is an extension of the original bagging method which

establishes a different weight for each example to be included in the bootstrapped

samples. In order to compute the weight of each sample, the methods mentioned

above estimate a density function using an iterative method and assuming a normal

data distribution. Recently, the term weighted bagging has also been used to describe

a new bagging strategy for classification and regression in two-class problems 20.

Boosting is another way to construct diverse classifier ensembles by varying the

inputs. Boosting has been proposed and refined in a series of works by Freund and

Schapire 21, leading to its most successful implementation to date called AdaBoost

(Adaptive Boosting). While bagging relies on random and independent changes in

the training data, boosting changes the training data to direct further classifiers

toward more difficult cases. In this way, desirable diversity is induced in the classifier

ensemble.

In this paper, we propose a new hybrid weighted bagging ensemble method

based on a non-parametric density estimation method that combines the benefits of

boundary methods and density estimation. The non-parametric density estimation

method is specially designed so as to be robust when estimating high-dimensional

data distributions by assuming that the density function can be well represented

by a forest graphical model. Once this model has been estimated, it can be used to

generate several weighted bootstrap samples of the data. Then, we can build a set

of classifiers and use their votes to classify new samples.

We analyze the general benefits of using bagging ensemble methods for different

boundary one-class classification methods in the presence of outliers. In particu-

lar, we compare bagging and the new weighted bagging ensemble methods on the

INTES dataset and 19 different datasets artificially contaminated with outliers.

We show that using bagging and weighted bagging ensemble methods for one-class
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classification can dramatically improve the classification results, especially when

datasets are contaminated with outliers.

The rest of the paper is organized as follows: Section 2 reviews some of the

most useful one-class classifier methods; Section 3 introduces our new method for

combining multiple one-class classifiers; Section 4 presents the experimental results;

and Section 5 rounds off the paper with our conclusions and prospects for future

work.

2. Background: One-Class Classifiers

There are three main approaches for solving the one-class classification problem:

density, boundary and reconstruction methods.

Density methods aim to estimate the probability density of the training set and

fix a threshold value on that density function. For instance, density can be estimated

by using a Gaussian model 22 or a mixture of Gaussians 23. A Parzen estimator

method 24,25 can be used if a non-parametric method is needed. All these methods

yield excellent results when the probability model fits the data and the sample size

is sufficient. However, the methods do not provide good results in high-dimensional

spaces due to the lack of enough samples and the difficulty in estimating a reliable

density function 1.

Boundary methods aim to estimate directly the boundary that encloses the tar-

get class samples, which, in some cases, can be seen as a simpler problem than

estimating the probability density function. The k-center method 26 can be used

to estimate the boundary by using a set of multi-dimensional spheres with mini-

mal radius. Schölkopf et al. 27 introduced the One-Class Support Vector Machine

(OCSVM), which uses a hyperplane to separate target samples from the origin

with the maximal margin. Later, the Support Vector Data Description (SVDD)

method was introduced by Tax et al. 28. That method can be seen as an evolution

of OCSVM and it consists of determining the smallest hypersphere that contains

the training data. Recently, a graph-based one-class classifier method, the Mini-

mum Spanning Tree Class Descriptor (MST CD), was proposed by Juszczak et al.
29. In that method, a graph-based description of the target class is calculated by

using the minimum spanning tree (MST) 30, and the classification rule is based

on the distance to the closest edge of the MST. Finally, Nearest Neighbor Data

Description (NNDD) 23 is a boundary method which extends the nearest neighbor

density estimator. In general, the main drawback of boundary methods is that they

depend strongly on the metric used, so they tend to be very sensitive to the scaling

of features and to the presence of outliers in the training set.

Reconstruction methods make assumptions about the clustering characteristics

of the data or about their distribution in subspaces. Then, a set of prototypes or

subspaces are defined and a reconstruction error is minimized. For example, K-

mean clustering 22 and Learning Vector Quantization (LVQ) 31 are representative

methods of this class that assume that the data are clustered and can be represented
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by a few prototypes.

Of the different one-class classifier strategies, here we focus on boundary meth-

ods, since they have been shown to be appropriate for both high- and low-

dimensional spaces. In the following subsections, we review three of the most pop-

ular boundary-based one-class classifiers: NNDD, SVDD and MST CD.

From now on, we considerX = [x1, · · · ,xn]
T as an n×dmatrix that corresponds

to the training dataset (see notationa); n is the number of examples and xi =

[x1, ..., xd]
T is a data example described by d features.

2.1. Nearest Neighbor Data Description (NNDD)

The NNDD method is an extension of the nearest neighbor density estimator 23. It

avoids estimation of the density function of the data and uses only the distances to

the first nearest neighbor. The function that describes the distance of a sample x

to the boundary is given by:

fNN (x) =
V (||x−NN tr(x)||)

V (||NN tr(x)−NN tr(NN tr(x))||)
(1)

where NN tr(x) represents the nearest neighbor to sample x in the training dataset

and V (r) is the volume of the hypersphere of radius r.

2.2. Support Vector Data Descriptor (SVDD)

The SVDD method consists of building a shaped boundary around the training data

X. In particular, it defines a hypersphere of radius r and center a which encloses

the maximum number of samples possible while having the minimum volume. This

requirement can be stated as a minimization problem:

min r2 + C
n∑

i=1

ξi with ||x′
i − a|| ≤ r2 + ξi (2)

where ξi are the slack variables introduced to allow for the presence of outliers in

the training data and C is the trade-off parameter that controls how much the slack

variables are penalized.

Equation (2) is solved using the Lagrange multipliers approach, which trans-

forms the problem to one of the maximization of the following function F with

aBold capital letters denote matrices, bold lower-case letters denote column vectors and non-bold

letters denote scalar variables. xj and xT represent the transpose of vector x; ||x|| designates the
Euclidean norm of vector x; and xi · xj denotes the inner product of vectors xi.
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respect to the Lagrange multipliers α = (α1, . . . , αn):

F =
n∑

i=1

αi(xi · xi)−
n∑

i,j=1

αiαj(xi · xj)

with 0 ≤ αi ≤ C, ∀i = 1, . . . , n and

n∑
i=1

αi = 1.

Finally, the function describing the distance between a given sample x and the

estimated boundary is given by:

f(x, α) = (x · x)− 2
n∑

i=1

αi(x · xi) +
n∑

i,j=1

αiαj(xi · xj). (3)

When a hypersphere is not a good fit for the boundary estimation of the data in

the original representation space, the inner product can be generalized by a kernel

function where a mapping of the data to a new feature space is implicitly applied.

2.3. Minimum Spanning Tree Class Descriptor (MST CD)

This classifier method is based on a graph that represents the training data. The

graph is computed to capture the structure of the data. In particular, the MST is

used.

The process of training the classifier is reduced to solving the standard MST

problem for a dataset. Several algorithms have been proposed for finding the MST

in polynomial time; with Prim’s 32 and Kruskal’s 33 the most popular. The MST

defines a graph without loops which connects all the vertices, such that the total

length of the edges is minimal. The length of an edge that connects two target

samples xi and xj is usually measured by the Euclidean distance between the

nodes.

This classifier method does not consider only vertices but also graph edges

for classifying, thereby providing a much richer representation of the data. The

classification of a new object, x, is based on the distance to the nearest vertex or

edge.

The projection of x onto an edge defined by the vertices {xi,xj} is:

peij (x) = xi +
(xj − xi) · (x− xi)

(∥xj − xi∥)
(xj − xi).

If the projection peij lies between xi and xj , then the distance d(x∥eij) between

x and the edge eij is computed as the Euclidean distance. Otherwise, d(x∥eij) is

derived as the shortest Euclidean distance to one of the vertices {xi,xj}
The distance of the new object, x, to the target class is defined as the minimum

distance to the set of (n− 1) edges of the MST:

DMST CD(x,X) = min
eij∈MST

d(x∥eij). (4)
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The decision as to whether x belongs to the target or non-target class is based on

a threshold, θ, set by the distances DMST CD. This threshold cannot be derived as

an error in the training set, since the distance of all target objects is equal to zero

according to the definition of the distance. Therefore, θ is determined by a quantile

function of the distribution of the edge weights in the given MST. The quantile

function is defined as:

θ ≡ ϑσ(ẽ) = ∥e([σn])∥ (5)

where ẽ = (e(1), e(2), ..., e(n)) is the sorted sequence of scalar weights of the edges in

the MST , such that: ∥e(1)∥ ≤ ∥e(2)∥ ≤, ...,≤ ∥e(n)∥; [a] returns the nearest integer

of a; and σ ∈ [0, 1]. Thus, ϑ0(ẽ) returns the minimum distance between two edges

of the MST , ϑ1(ẽ) is maximum, and ϑ0.5(ẽ) is the median weight of the edges.

3. Bagging Strategy for One-Class Classifier Methods

In this work, we focus on one-class classification problems with outlying data. Since

many real problems are undersampled problems, as is the case with the INTES

dataset, we focus on boundary-based one-class classifiers. In this context, boundary

one-class classifiers are unstable. This means that small changes in data result in

large changes in the estimated boundary. In order to improve the performance of

these one-class classifiers when dealing with a contaminated dataset, we propose

the use of bagging-based ensemble methods. The bagging strategy has been shown

to yield good results in binary/multi-class classifications, when it is applied on

unstable classifiers 34.

It must be pointed out that not all ensemble strategies that have been proposed

for two-class and multi-class problems can be used directly in a one-class scenario.

The acceptance/rejection decision for all one-class classifiers depends on a threshold

that is fixed by the estimated probability or distance. This threshold is usually fixed

by setting the percentage of target examples that should be accepted. Since we have

no information regarding the non-target class, methodologies such as boosting,

which are based on measuring the empirical error in all classes, cannot be applied

to one-class classification.

3.1. Bagging

Bagging generates L new training datasets, X′
ℓ, of size n′ (n′ ≤ n) by sampling

from X uniformly and with replacement. Some instances of X may not appear in

X′
ℓ, and some may appear duplicated. After the construction of the L different (and

varied) classifiers, every new sample is classified by computing the majority vote

from the ensemble.

As can be seen, bagging is a simple strategy that can be used in any learning

scenario: two-class, multi-class or even one-class classification. In classical bagging,

uniform sampling is applied, and for this reason all the samples have the same

probability of being present in the training set of each classifier of the ensemble. If
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all the samples have the same probability, then outliers are likely to be included

in most of the bootstrap samples. This characteristic, which has been shown to

be beneficial for clean datasets, can be a problem for datasets with outliers, as we

will show in Section 4. For this reason, we propose the use of a weighted bagging

strategy, which overcomes the presence of outliers by defining a sampling policy that

minimizes the probability of an outlier being present in the bootstrap samples.

3.2. Non-Parametric Weighted Bagging for One-Class

Classification

In order to minimize the probability of an outlier being present in the bootstrap

samples, the density function of the data can be used in the sampling procedure.

This idea was proposed by Shieh and Kamm 13 to overcome the problem of training

OCSVMs in the presence of outliers. The method weights points based on how

close they are to the target class, using a kernel density estimator. In this way,

it assigns lower probability weights on outliers (points far from the target class).

Later, Segúı et al. 35 proposed the use of weighted bagging to combine MST CD

one-class classifiers. Their preliminary results showed that weighted bagging can

also reduce the influence of outliers in this boundary method.

The success of weighted bagging is directly related to how well the data density

is estimated. The method presented by Shieh and Kamm 13 is suitable for problems

where a kernel density estimator can be directly applied to the data samples; but

it is severely limited by the capacity of kernel density estimators to represent high-

dimensional data.

In order to avoid this problem, we propose the application of a non-parametric

density estimator that was proposed recently 36. This method, called the Forest

Density Estimation method, is a non-parametric method specially designed to com-

pute the optimal density for under-sampled data in high-dimensional spaces.

The most common way of dealing with the problem of under-sampled data is

to impose assumptions on the data distribution. The Forest Density Estimation

method uses an alternative approach to deal with this problem: it restricts feature

dependencies to simplify the estimation of the unknown data distribution in an

optimal way. Feature dependencies are restricted to those that can be represented

using a graph structure of features where edges between conditionally independent

features are removed and not considered for the density estimation. In this way,

instead of computing a single multivariate density function of the data, the estima-

tion problem is transformed into a series of simpler problems that compute several

univariate and bivariate marginal densities.

Let xi = [x1, ..., xd]
T be a data sample described by d features. Let X be a

dataset composed of n data samples. Let G = (V,E) be an acyclic graph with d

vertices that represent the data feature xi and the e ≪ d2 edges connecting the

pairs of features (xi, xj) that are estimated to be important in order to properly

approximate p(x). The density estimation p(x) is then obtained using the following
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expression:

p(x) =
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)

d∏
k=1

p(xk), (6)

where p(xi) is the univariate marginal density of the variable xi and p(xi, xj) is the

bivariate marginal density of features xi and xj .

In order to apply this model, we must solve the following problems: (1) How

to decide which pairs of features (xi, xj) are important in order to properly ap-

proximate p(x); (2) how to estimate p(xi) and p(xi, xj); and (3) how to prevent

overfitting when working with a small sample. Following Gupta et al. 36, we propose

these solutions:

(1) Finding the best forest structure for p(x) can be recast as the problem of

finding the maximum weight spanning forest for a weighted graph, where the

weight of the edge connecting xi and xj is the mutual information between

those variables. This approach was originally proposed by Chow and Liu 37

back in 1968. The method proceeds by iteratively adding an edge connecting

the pair of variables with maximum mutual information from all all pairs not

yet visited by the algorithm. The method can be stopped at any iteration, k,

to get a k-edged weighted forest.

(2) The univariate marginal density of xi can be computed using a kernel density

estimation method. Given an evaluation point xi, its univariate kernel density

estimate based on the observations x
(s)
i is:

p(xi) =
1

n

n∑
s=1

1

h1
K

(
x
(s)
i − xi

h1

)
(7)

where h1 is a bandwidth parameter tuned for optimal estimation 38. The bi-

variate marginal density of two features xi and xj can also be computed using

a two-dimensional kernel density estimation method:

p(xi, xj) =
1

n

n∑
s=1

1

h2ih2j
K

(
x
(s)
i − xi

h2i

)
K

(
x
(s)
j − xj

h2j

)
(8)

where h2i and h2j are bandwidth parameters tuned for optimal estimation 38.

(3) If the estimated graph G is a full connected tree, it may lead to overfitting. In

order to reduce this problem, the graph G is pruned to k ≤ d− 1 edges, using

the following procedure:

(a) Randomly divide the training set into two sets, D1 and D2, of sizes n1 and

n2, where n1 = n2 and n1 + n2 = n.

(b) UseD1 to estimate the univariate, pn1(xi), and bivariate, pn1(xi, xj), density

functions.

(c) Compute the mutual information matrix Î(xi, xj).

(d) Use Î(xi, xj) to compute the maximum weight spanning tree Gd−1
n1

.
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(e) Use D2 to prune the graph Gd−1
n1

and find the forest Gk
n1

with k edges by

maximizing the following equation:

argmaxk∈{0,...,d−1}
1

n2

∑
s∈D2

log

( ∏
(i,j)∈E(k)

pn1(x
(s)
i , x

(s)
j )

pn1(x
(s)
i )pn1(x

(s)
j )

)
(9)

where E(k) corresponds to the set of edges of the forest Gk
n1
.

Once the forest is pruned to k edges, the forest density function, which deter-

mines the weight of each sample to be selected in a bootstrap sample of the

ensemble, is defined as:

p(x) =
∏

(i,j)∈E(k)

pn1(xi, xj)

pn1(xi)pn1(xj)

∏
k

pn1(xk). (10)

The proposed method can be used to build a density function for high-

dimensional data while computing only univariate and bivariate kernel density esti-

mates of the features, and it can readily be used to bias the sampling process during

bagging, as shown in Algorithm 1. In that algorithm, the base model is not specified,

but there is no special restrictions on it. Hence, non-parametric weighted bagging

can be seen as a wrapper method that can be used with any one-class classifier.

In our experiments, we have considered NNDD, SVDD and MST CD classifiers as

alternative base models.

Figure 1 represents the application of the Forest Density Estimation method to

one of the databases considered.

Algorithm 1 Non-parametric weighted bagging.

Require: A dataset X with n samples x
(s)
i = [x

(s)
1 , ..., x

(s)
d ]T described by d fea-

tures.

1: Compute the optimal k1-edged weighted forest Gk1 = (V,E(k1)), k1 = d−1, for

representing p(x) using the Chow Liu algorithm 37.

2: Based on the data samples, compute p(xi) for every xi in V and p(xi, xj) for

every pair (xi, xj) in E(k1).

3: Build Gk2 = (V,E(k2)) by pruning Gk1 to k2 < d− 1 edges.

4: Define p(x) =
∏

(i,j)∈E(k2)

pn1 (xi,xj)

pn1 (xi)pn1 (xj)

∏
k pn1(xk).

5: Compute a weight wi = p(x
(s)
i ) for every sample.

6: for l = 1 to L do

7: Select N samples from the training set by performing weighted sampling with

replacement.

8: Train a base model Ml on the samples.

9: end for

10: return M1, . . . ,ML.
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Fig. 1. Forest density estimation for E. coli dataset: a) estimated univariate density functions p(xi);
b) estimated forest structure; c) estimated bivariate density functions p(xi, xj) corresponding to
the connected features of the forest structure.

4. Results

In this section, we show the results of bagging and weighted bagging ensemble

methods using one-class classifiers in original and noisy versions of 20 datasets.

4.1. Datasets

The experiments were performed using datasets obtained from 20 real databases.

All of them were obtained, as detailed below, from the UCI repository 39, with the

exception of the INTES dataset:

• INTES dataset. This dataset, which was the initial motivation for our work, is

a standard dataset which contains a set of 118 samples of 19 features extracted

from wireless capsule endoscopy videos of healthy subjects and patients with

intestinal motility disorders 10. It has the following particularities:

(1) Both the symptoms and the extracted features from the wireless capsule

endoscopy that the patients present are highly heterogeneous.

(2) We refer to the set of volunteers as healthy subjects and we call ”patients”

those subjects who returned a negative motility test result from manometric

devices 40.
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Table 1. Datasets.

Dataset (target class) Dimensions Target sam-
ples

Outlier
samples

Liver (present) 6 145 200
Liver (absent) 6 200 145
Iris (versicolor) 4 50 100
Iris (setosa) 4 50 100
Biomed (healthy) 5 127 67
Biomed (patient) 5 67 127
Heartstatlog (absent) 13 150 120
Heartstatlog (present) 13 120 150
E. coli (periplasm) 7 52 284
Ionosphere (good) 34 225 126
Hepatitis (normal) 19 123 32
Housing (<35) 13 48 458
Imports (low risk) 25 88 71
Vehicle (Opel) 18 212 634
Vehicle (Saab) 18 217 629
Sonar (rocks) 60 97 111
Cancer (wpbc ret) 33 47 151
Arrhythmia (normal) 278 237 183
Breast(malignant) 9 458 241
INTES (healthy) 19 105 19

(3) It is expected that a small percentage (2% - 5%) of healthy subjects would

present abnormal behavior, i.e., an outlier sample.

(4) The motility test has a considerable percentage of error 41.

These particularities taken together suggest to us that this is a case of a one-

class classification problem, where the target (healthy) class is contaminated

with outliers.

• UCI datasets. We randomly selected 19 datasets from the UCI repository 39 in

order to extensively test the different methods we aim to compare.

Table 1 contains a list of the datasets considered, with the corresponding number

of features and number of examples of the target and outlier class.

4.2. Performance Evaluation

All the experiments were performed using MATLAB on a standard personal com-

puter. The MATLAB version of the MST CD, SVDD and NNDD methods, publicly

available in the DD TOOL toolbox 42 b of the prtools library, were used. For all

the methods, the default parameters were used: (1) MST CD is computed over the

full dataset; (2) SV DD: sigma = 5; (3) NNDD: k = sqrt(d) where d is the data

dimensionality.

In order to evaluate the performance of the ensemble one-class classifier meth-

ods, the area under the receiver operator characteristics (ROC) curve (AUC) was

computed 43. The AUC measure is the total performance of a classifier integrated

over all possible thresholds. By ”‘thresholds”’ we refer to the density/distance to

bhttp://ict.ewi.tudelft.nl/˜davidt/dd tools.html
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(a) MST CD (b) B MST CD (c) WB MST CD

Fig. 2. Results of the: MST CD (a); bagging MST CD (b); and non-parametric weighted bagging
MST CD (c), methods for a synthetic Gaussian dataset plus one outlier (indicated by the arrow).
It can be seen that only the weighted bagging method was able to clearly rule out the outlier.

the estimated class. A large AUC value therefore means better performance of the

one-class classifier; a value lower than 50% means that the classifier performs worse

than random guessing.

All the experiments were performed using 50% of the target class as the training

set, and the other 50% of the target class together with the outlier class (samples

from other dataset classes) as test set. The experiments were repeated 20 times and

the mean value of the trials is presented.

To measure the significance of the results, two different statistical tests were

performed. On the one hand, the paired Student t-test (as suggested in 44) was used

to evaluate the statistical significance between pairs of classifiers over a particular

dataset. On the other hand, the non-parametric Friedman test 45 was used in order

to evaluate the proposed ensemble methods over several datasets. In this latter test,

the algorithms are ranked for each dataset according to their performance (with 1

the highest rank and k, the number of methods evaluated, the lowest rank). The

average rank over all the datasets is used to evaluate the statistical test. For both

tests, the statistical significance level α = 0.05 was used.

4.3. Synthetic Toy Experiment

A toy experiment using synthetic data was performed in order to illustrate the prob-

lem. We trained the MST CD classifier using a 2D cloud of Gaussian distributed

data with one outlier. The estimated boundaries using a base classifier and both

ensemble bagging and weighted bagging of MST CD are reproduced in Figure 2. It

can clearly be seen that the outlier sample (indicated by the arrow) present in the

training set was enclosed in the estimated boundary for the original and ensem-

ble bagging MST CD; however, ensemble weighted bagging MST CD rejected this

sample.
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4.4. Ensemble of One-Class Classifiers

In this second experiment, we evaluated bagging and the non-parametric weighted

bagging for one-class classification. In particular, we used MST CD, SVDD and

NNDD on the 20 original datasets. The number of classifiers in the ensembles was

set to L = 100.

Table 2 presents the results for the three one-class classification methods de-

scribed in Section 2. Bold numbers in the table correspond to the best result or a

non-significantly worse than best result, according to the Student t-test performed

for each dataset and one-class method. In addition, the last row of the table presents

the number of cases where the methods obtain the best or a non-significantly worse

than best result (according to the paired Student t-test). As can be appreciated

from the table, the non-parametric weighted bagging method always delivered ei-

ther the best result or a non-significant worse than best result using MST CD and

NNND, and only in 3 cases out of 20 did it get a statistically worse result than the

best result using SVDD.

Finally, Table 3 presents the rankings from the Friedman test. The best and

not statistically worse than best results appear in bold. As can be observed, in

all cases the ensemble bagging and non-parametric weighted bagging obtain better

rankings than base one-class classifier methods, showing a statistically significant

improvement for MST CD and NNDD.
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Table 3. Average rank from the Friedman test using original versions of the datasets. Best and

not significantly worse than best results appear in bold.

Original Bagging Weighted Bagging

MST CD 2.70 1.70 1.60
SVDD 2.35 2.00 1.75
NNDD 2.60 1.65 1.65

4.5. Ensembles of One-Class Classifiers in Noisy Data

In this third experiment, we evaluated the behavior of original one-class classifiers

(MST CD, SVDD, NNDD), bagging and the non-parametric weighted bagging in

a noisy version of the 19 datasets from the UCI repository and also the INTES

dataset. The noisy version of datasets was obtained by swapping a percentage of

the samples from the target class for samples from the outlier class. The experiment

was repeated twice: first, swapping 10% of the target class samples with outliers;

and second, swapping 25%.

Tables 4 and 6 show the results of this experiment using 10% and 25% of outliers

in the target class, respectively. First of all, note that if we compare the results using

the original data (Table 2) and the noisy versions of the data (Table 4 and 6), the

accuracy of the classifiers is clearly reduced as more noise is added to target class.

However, this reduction is not the same for all the datasets. For example, it can be

observed that in some datasets (iris and biomed) the AUC is reduced by more than

10%, while in other datasets (cancer or heart) the reduction is only 2% or 3%. This

is due to the different data distributions and/or dimensionality of the databases.

Additionally, we can observe in Tables 4 and 6, that the proposed non-

parametric weighted bagging outperforms the results of the base classifier and the

classical bagging strategy in most of the datasets. Regarding the result of the Stu-

dent t-test, we observe that, in most of the cases, the non-parametric weighted

bagging strategy obtains the best result or a non-significantly worse than best re-

sult (bold numbers in the table).

Finally, the results from the Friedman statistical tests are displayed in Tables 5

and 7. They show that forest weighted bagging is statistically better than all base

classifiers, and also outperforms the results of ensemble bagging in MST CD and

NNDD.
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Table 5. Average rank from the Friedman test using noisy versions of the datasets (10% of outliers
in the target class). Best and not significantly worse than best results appear in bold.

Original Bagging Weighted Bagging

MST CD 2.80 2.05 1.15
SVDD 2.60 1.95 1.45
NNDD 2.75 2.05 1.20
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Table 7. Average rank from the Friedman test using noisy versions of the datasets (25% of outliers
in the target class). Best and not significantly worse than best results appear in bold.

Original Bagging Weighted Bagging

MST CD 2.80 2.05 1.15
SVDD 2.50 2.10 1.40
NNDD 2.80 2.05 1.15

5. Conclusions

In this paper, we deal with the problem of one-class classification in the presence of

outliers. We study the application of ensemble methods for one-class classification,

which has been rather limited until now. In particular, we evaluate the classical

bagging strategy and propose a new non-parametric weighted bagging strategy in

order to improve robustness when dealing with outliers in high-dimensional spaces.

The method we propose estimates the data density by assuming a forest struc-

ture of the data and constructs bootstrap samples according to the data density

obtained: the higher the estimated density of a sample, the greater its likelihood of

being selected for a bootstrap of the ensemble.

An extensive experimental study using original and noisy versions of 20 datasets

was performed. The experiments show that the ensemble strategies improve the clas-

sification accuracy for different one-class classifier methods and provide increased

robustness when dealing with noise. Furthermore, we can infer from the results that

the weighted bagging ensemble strategy achieves better results when dealing with

original and especially noisy datasets than base one-class classifiers. It also offers

a statistically significant improvement in comparison with base one-class classifier

and bagging ensemble methods.

In future work we will study new ensemble strategies, other than bagging, to

build ensemble methods for one-class classification. Moreover, in the density func-

tion computation, new distance metrics can be considered that take advantage of

the data distribution.
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