|
Victor M. Campello, Polyxeni Gkontra, Cristian Izquierdo, Carlos Martin-Isla, Alireza Sojoudi, Peter M. Full, et al. (2021). Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. TMI - IEEE Transactions on Medical Imaging, 40(12), 3543–3554.
Abstract: The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.
|
|
|
Hugo Jair Escalante, Heysem Kaya, Albert Ali Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guçlu, et al. (2022). Modeling, Recognizing, and Explaining Apparent Personality from Videos. TAC - IEEE Transactions on Affective Computing, 13(2), 894–911.
Abstract: Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
|
|
|
Victor M. Campello, Carlos Martin-Isla, Cristian Izquierdo, Andrea Guala, Jose F. Rodriguez Palomares, David Vilades, et al. (2022). Minimising multi-centre radiomics variability through image normalisation: a pilot study. ScR - Scientific Reports, 12(1), 12532.
Abstract: Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
|
|
|
Miguel Angel Bautista, Sergio Escalera, Xavier Baro, Petia Radeva, Jordi Vitria, & Oriol Pujol. (2011). Minimal Design of Error-Correcting Output Codes. PRL - Pattern Recognition Letters, 33(6), 693–702.
Abstract: IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
Keywords: Multi-class classification; Error-correcting output codes; Ensemble of classifiers
|
|
|
Sergio Escalera, Jordi Gonzalez, Hugo Jair Escalante, Xavier Baro, & Isabelle Guyon. (2018). Looking at People Special Issue. IJCV - International Journal of Computer Vision, 126(2-4), 141–143.
|
|