|
Joakim Bruslund Haurum, Meysam Madadi, Sergio Escalera, & Thomas B. Moeslund. (2022). Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification. AC - Automation in Construction, 144, 104614.
Abstract: A crucial part of image classification consists of capturing non-local spatial semantics of image content. This paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in the images, features are aggregated at different scales non-locally through the use of a lightweight vision transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi-label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage points.
Keywords: Sewer Defect Classification; Vision Transformers; Sinkhorn-Knopp; Convolutional Neural Networks; Closed-Circuit Television; Sewer Inspection
|
|
|
Laura Igual, Joan Carles Soliva, Antonio Hernandez, Sergio Escalera, Xavier Jimenez, Oscar Vilarroya, et al. (2011). A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder. BEO - BioMedical Engineering Online, 10(105), 1–23.
Abstract: Background
Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations.
Method
We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure.
Results
We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis.
Conclusion
CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
Keywords: Brain caudate nucleus; segmentation; MRI; atlas-based strategy; Graph Cut framework
|
|
|
Clementine Decamps, Alexis Arnaud, Florent Petitprez, Mira Ayadi, Aurelia Baures, Lucile Armenoult, et al. (2021). DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. BMC Bioinformatics, 22, 473.
Abstract: Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.
|
|
|
Sergio Escalera, Ana Puig, Oscar Amoros, & Maria Salamo. (2011). Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes. CGF - Computer Graphics Forum, 30(7), 2107–2115.
Abstract: IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
|
|
|
Gerard Canal, Sergio Escalera, & Cecilio Angulo. (2016). A Real-time Human-Robot Interaction system based on gestures for assistive scenarios. CVIU - Computer Vision and Image Understanding, 149, 65–77.
Abstract: Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.
Keywords: Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation
|
|