|
Mohammad Ali Bagheri, Qigang Gao, Sergio Escalera, Huamin Ren, Thomas B. Moeslund, & Elham Etemad. (2017). Locality Regularized Group Sparse Coding for Action Recognition. CVIU - Computer Vision and Image Understanding, 158, 106–114.
Abstract: Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.
Keywords: Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition
|
|
|
Pichao Wang, Wanqing Li, Philip Ogunbona, Jun Wan, & Sergio Escalera. (2018). RGB-D-based Human Motion Recognition with Deep Learning: A Survey. CVIU - Computer Vision and Image Understanding, 171, 118–139.
Abstract: Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.
Keywords: Human motion recognition; RGB-D data; Deep learning; Survey
|
|
|
Simone Balocco, Carlo Gatta, Francesco Ciompi, A. Wahle, Petia Radeva, S. Carlier, et al. (2014). Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. CMIG - Computerized Medical Imaging and Graphics, 38(2), 70–90.
Abstract: This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
Keywords: IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation
|
|
|
Laura Igual, Joan Carles Soliva, Sergio Escalera, Roger Gimeno, Oscar Vilarroya, & Petia Radeva. (2012). Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder. CMIG - Computerized Medical Imaging and Graphics, 36(8), 591–600.
Abstract: We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.
Keywords: Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles
|
|
|
Egils Avots, M. Daneshmanda, Andres Traumann, Sergio Escalera, & G. Anbarjafaria. (2016). Automatic garment retexturing based on infrared information. CG - Computers & Graphics, 59, 28–38.
Abstract: This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms.
Keywords: Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading
|
|