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This paper introduces a new automatic technique for garment retexturing using a single static image along
with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition
device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or
the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are
computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is
applied to the new colours from the texture image. As the main contribution of the proposed method, the
latter information is obtained based on extracting a linear map transforming the colour present on the
infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that
the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show
that it can be used to produce realistic representations, which is substantiated through implementing it under
various experimentation scenarios, involving varying lighting intensities and directions. Successful results are
accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the
Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more
realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a
wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although
the focus of this study is on garment retexturing, and the investigation of the configurations is steered
accordingly, since the experiments target an application in the context of virtual fitting rooms.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Retexturing constitutes an essential step towards creating
models providing realistic visual representations of real-world
objects, i.e. image synthesis [1–4]. In fact, it is intended to incor-
porate colour information into a model, which may be the result of
a 3-Dimensional (3D) reconstruction process [5]. Usually, perform-
ing the latter task involves mapping a planar texture image, which
contains the desired colour pattern, onto the surface of the object,
being referred to as texture mapping [6]. Various techniques have
been proposed in the literature for fulfilling the foregoing goal. An
intermediate 3D shape [7], direct drawing onto the oct [8,9] and
using an exponential fast matching method through making use of
geodesic distances [10–12] could be mentioned as examples.
Kai Xu.
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Among the most important applications of retexturing is its usage
in 3D virtual garment representation, the realistic appearance of
which is vital, and has encouraged many researchers to get engaged in
attempts to improve it during the last decade [13–15]. The role it plays
in movie and game industries [16,17] is also of paramount importance.
One of the most frequently used texture fitting methods was proposed
in [18], allowing the users to sketch garment contours directly onto a
2-Dimensional (2D) view of a mannequin. The initial algorithm has
later been further enhanced by others [19,20]. An alternative approach
to this problem is using a single image. In [21], an estimation of a 3D
pose and shape of the mannequin is followed by constructing an
oriented facet for each bone, according to their angles, and projecting
the 2D garment outlines onto the corresponding facets.

In [22], on the other hand, the focus is on a texture mapping
algorithm on the basis of harmonic maps. They project the 3D surface
onto a plane, and parametrise it, by means of an angle-based-flattening
method. The constraints between the feature-points of the model and
the texture image are then specified by the user interactively. After-
wards, the texture coordinates are determined using harmonic maps.
Additionally, for achieving reliable real-time performance, the whole
map is locally refined. The resulting algorithm has been reported to be
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Fig. 1. A Flowchart illustrating the necessary steps of the IRT.
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accurate, due to the energy-minimisation embedded into the harmo-
nic maps, which prevents possible distortions.

Retexturing usually involves several challenges. First, texture
mapping is difficult in the presence of non-rigid and easily trans-
formable surfaces, such as clothes. One of the main issues to be
tackled when dealing with such surfaces is self-occlusion, where a
part of the surface blocks the visibility of another one [23]. An addi-
tional challenge is to shade the reference texture [24]. Various com-
puter graphics rendering methods could be employed to visualise the
surface [25]. However, the lighting intensity and the original colour of
the surface are usually not known from the outset, which means that
the shading parameters, which are dependent on a map transforming
the surface colour to the one reported on the RGB channels, are not
available, unless a considerable amount of manual contribution is
provided by the user, in non-automatic settings. The foregoing issue is
the main reason causing the existing texture mapping methods to
degenerate under the changes in the illumination conditions, along
with other factors, such as the complexity of the scene.
This paper is aimed at proposing, and verifying the efficiency of,
a new approach, referred to as the IR-based Retexturing Method
(IRT), which overcomes the above problem, and offers reliable,
automatic performance. The underlying notion and the main
novelty of the IRT lies in the shading process, which is completely
colour- and texture-invariant. In fact, the shading parameters, in the
context of the IRT, are extracted from a linear transformation
mapping the Infrared (IR) image to the RGB one. More clearly, the
pure colour values are derived from the IR image, and, for guaran-
teeing that the changes of the illumination and other experimental
factors are incorporated into the calculations properly, the factors
supposed to have been applied to them to produce the RGB
representation are extracted, and applied to the reference texture.

The state-of-the-art methods often perform satisfactorily only in
cases where the retextured region is sufficiently bright, and its
luminance values can be readily utilised. The IRT, however, is able to
handle the general case. Furthermore, it operates properly for gar-
ments that already have textures on them, which, to the authors'
knowledge, is not possible by any of the existing approaches. It is
worth noticing that despite the fact that the IRT, based on the
experimental results reported in the upcoming sections, is capable
of overcoming occlusions and self-occlusions in some cases, these
issues are not taken into account in this study, i.e. it is assumed that
the garment image does not suffer from such deficiencies.

The IRT has been developed with a focus on virtual fitting room
applications [26]. It replaces the texture of a shirt obtained using the
Microsoft Kinect II camera with a new custom texture from an image
file. As the first step, the image is segmented in order to extract the
region standing for the cloth, using two main approaches: Breadth-
First Search (BFS) [27] and GrabCut [28]. The latter is intended to
minimise the amount of manual contribution required from the user,
which will be discussed in more detail throughout the upcoming
sections. Then texture mapping is conducted, based on the normal-
ized coordinates of the reference texture image and that of the surface
to be retextured. Finally, the aforementioned novel shading approach
is incorporated in order to integrate the changes in the illumination
and other experimental settings that might have affected the
appearance of the surface in the scene. For the sake of evaluating the
efficiency of the proposed method, it is examined based on Mean
Opinion Score (MOS) analysis, which has resulted in superior scores.

The rest of the paper is organised as follows. Section 2 details the
IRT. Section 3 provides a literature review outlining the differences
between the IRT and its existing state-of-the-art counterparts. Sec-
tion 4 presents the results of implementing the IRT under various
experimentation scenarios. Finally, Section 5 concludes the paper.
2. Description of the proposed method: IRT

The IRT uses static images from the Microsoft Kinect II camera,
along with the depth information and real-world coordinates it
provides. Although it is devised such that the most general applica-
tions could be handled, the tests are carried out on images that
contain a personwearing a shirt. The main application of the IRT is in
virtual fitting rooms, where the subject can have the texture of the
3D model of the garment they are wearing changed as they wish.

The IRT replaces the texture of the shirt with a desired refer-
ence texture, through performing the following three tasks: seg-
mentation, retexturing and shading. In other words, the part of the
image corresponding to the garment worn by the subject is first
segmented out, and then retextured by calculating the texture-
domain coordinates for each pixel in the area of interest, followed
by applying shading to the colour information. The overall step-
by-step procedure is shown in Fig. 1, and for more clarity, through
the pseudo-code provided in Algorithm 1.
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Algorithm 1. A pseudo-code representing the IRT
Details about each part of the above process are presented in
what follows. It should be noted that the computational complexity
is linear, O(n), in terms of the number of pixels of the reference
texture, n, and it can be effectively run in real-time.

2.1. Segmentation

In the context of the IRT, the segmentation of a shirt from an image
is not the main focus, as there are several available techniques that can
be readily utilised [29,30,28]. We first use the depth information from
the Kinect II to effectively remove the background. It returns stable
results for various test cases used for validation. The output should be
further refined in order to obtain the exact area corresponding to the
garment that is later going to be retextured. In simple cases, handling
the latter task would be possible through thresholding based on the
colour. However, the aim of this paper is to create a retexturing
algorithm that would suffice for garments with different colours,
which might also contain a complicated texture, under different poses
of the subject, with an arbitrary background setup. It is also desired to
take the cases where different parts of the garment, e.g. shirt and
pants, have a similar colour, into consideration, as well as the ones
where the garment has a colour that is too close to the skin colour.

We try out two different approaches for refining the foreground,
i.e. removing the parts of the background-removed image which do
not belong to the garment. As the first solution, the prior information
about which part of the previously segmented out person corresponds
to the garment that needs to be retextured is incorporated into the
Breadth-First Search (BFS) algorithm. The foregoing information can be
obtained from the user as an interactive input, where they specify
boundary lines at the edges of the restricted areas, which is necessary
to make the algorithm avoid including parts of the person that should
not be associated with the garment in the final segmentation result.
The BFS possesses linear complexity. On the colour image, it starts
from a prescribed point, and then expands to each pixel in the
4-neighbourhood of the part explored, unless the neighbourhood pixel
is marked as restricted. Finally, the algorithm adds all the pixels that it
has been able to reach to the final segmented garment.

The second approach, which is incorporated into the IRT in
order to ensure that the proposed retexturing algorithm requires
the minimal amount of manual contribution from the user, i.e. is as
automatic as possible, is the interactive, semi-automatic method
GrabCut [28], where the user has to leave marks, i.e. points or
curves, that could help the software to distinguish the parts that
are going to be left out from those expected to be kept. However,
still the proportion of the amount of interaction with the user to
the whole workload depends on a variety of factors, including the
complexity of the scene, e.g. the type, intensity and direction of
the illumination, the pose of the subject and the intricacy of the
colours involved. For example, if the cloth is coloured similarly to
the skin or the surrounding background, then a considerable level
of input from the user is required, since in those cases, it is usually
easier for the segmentation algorithm to confuse the garment with
other ingredients of the scene, which means that a higher number
of rounds of iterations receiving the guidance marks is needed to
achieve the precision discriminating between the nuances
involved.

On the other hand, if parts of the body or other components of
the scene cover the garment, and appear on top of it in the image,
which usually causes the garment to be divided into multiple
zones, perhaps being too small, and not having regular shapes,
much more interaction with the user is required for separating the
parts of the garment that have to be retextured from the rest. The
foregoing issues will be demonstrated more clearly, through the
experimental results, in the next section. Nevertheless, typical
scenarios could usually be dealt with in a reliably fast manner.

2.2. Texture mapping

Mapping the reference texture to the input image, which is
subject to retexturing, is performed automatically, where the
location of the pixel on the reference texture to take the colour
value from is determined based on the normalized depth value. It
is worth noticing that the reference texture image is assumed to
possess ideal lighting conditions, and expected not to require
preprocessing. The Kinect API enables the translation of screen
coordinates of an image into real world coordinates. More speci-
fically, the following map is used:

ω : x; yð Þ- X;Y ; Zð Þ; ð1Þ

where x; yAN denote the screen coordinates of the image, and X;
Y ; ZAR stand for the real-world coordinates corresponding to
them. The objective is to map the screen coordinates onto that of
the texture domain. It is achieved using the functions fu and fv, as
follows:

u¼ f u x; yð Þ ¼W
ωx x; yð Þ�Xmin

Xmax�Xmin
; ð2Þ

v¼ f v x; yð Þ ¼H
ωy x; yð Þ�Ymin

Ymax�Ymin
; ð3Þ
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where u and v are the new texture domain coordinates, ωxðx; yÞ
and ωyðx; yÞ denote the X and Y coordinates, respectively, obtained
from the map ωðx; yÞ, and Xmin; Ymin; Xmax and Ymax stand for the
smallest and largest X and Y coordinates of the pixels from the
blob obtained in the last step, respectively. In addition, W and H
are the width and height of the texture image, respectively.

It should be noted that the texture space coordinates that are
calculated in the above manner do not depend on the real-world
Z-coordinates, i.e. the map from (x,y) to (u,v) is defined such that it
avoids the so-called perspective effect.
2.3. Shading

Now that the texture space coordinates for each pixel have
been specified, it becomes necessary to calculate their new colour
values. A standard approach to doing so would be to use the
already existing colour information from the original image.
However, this has a drawback of not being totally colour invariant,
as darker colours have a much smaller amount of intensity chan-
ges. Instead, as the main contribution of the paper, a novel shading
system is proposed, which uses the IR image of the scene to infer
the lighting conditions, and takes them into account for the sake of
realistic shading calculation. More clearly, for extracting the pure,
unshaded colours, the IR values are used, as they directly indicate
the amount of light on the surface. To find out the desired rela-
tionship between the pure colour values and the shaded ones, a
linear map that transforms the IR image pixels to their counter-
parts on the RGB image is derived, and applied to the colour values
taken from the reference texture image.

Let us assume that a colour c¼ r; g; bð Þ, with its red, green and
blue components, r, g and b, respectively, is obtained from the
texture image, and the colour of the corresponding pixel on the
RGB image is c0 ¼ r0; g0; b0

� �
, with a similar notation. Obviously, the

colour c0 depends on the scene lighting conditions, and the actual
colour under perfect lighting conditions, where the whole surface
is uniformly lit, is still unknown. Nevertheless, c0 can be expressed
as a linear multiplier of the original colour of the pixel,
cn ¼ rn; bn; gn

� �
, as follows:

c0 ¼ l x; yð Þcn ¼ lrn; lbn; lgn
� �

; ð4Þ

where l denotes the light intensity at that point. Then the colour of
the texture image can be treated as the new true colour in max-
imum lighting intensity, and l is used as a coefficient to transform
it through the same map, and find the shaded colour, i.e.
lc¼ lr; lg; lbð Þ.

In many cases, the values of x; yð Þ that are very close either to
zero or one produce unrealistically dark or bright regions. To
overcome this problem, in the context of the IRT, histogram
stretching is used in order to confine its values within the range

α
255;

β
255

h i
, where the values of α and β have to be determined in a

case-by-case manner, depending on the experimental setup, since
they are under the influence of the lighting conditions. All the
possible combinations of the foregoing parameters are checked,
and the best configuration is selected based on visual inspection,
opting for the most realistic results achieved through retexturing.
Nevertheless, the process of determining these values is only
required to be performed once at the training stage under a certain
experimental setup, and then just used as they are when testing.
For example, Fig. 2 shows sample retextured garment images with
β fixed at 160 and varying α. As it can be seen from the foregoing
image, lower values of α have led to more realistic, hence desir-
able, results.
So the lighting intensity approximation can be expressed as
follows:

l x; yð Þ ¼ αþ β�α
Irmax� Irmin

� Ir x; yð Þ� Irminð Þ; ð5Þ

where Irmax and Irmin are the maximum and the minimum IR
intensities in the segmented image area, respectively.

In fact, the experiments have shown that the proposed shading
method operates reliably under a wide range of conditions, as it is
pattern-, colour- and pose-invariant, and the only necessary pre-
condition is that the garment to be retextured be made of the
same material as the one present in the original Kinect frame, so
that, in order to avoid the effect of the albedo changes, the infrared
reflection intensity would be approximately the same in different
parts of the surface.
3. The related works

In recent years there has been an increase in research related to
retexturing, partly because of the more widespread use of depth
cameras like Microsoft Kinect [31]. There are different kinds of
approaches:

1. Marker-based methods where the image has easily detectable
reference points that allow it to accurately recover the surface
based on the displacement of the markers;

2. Methods that are trying to construct an approximation of the
surface without such prior knowledge and using general char-
acteristics like image gradients;

3. Methods that use multiple viewpoints or depth cameras.

White and Forsyth describe a method [24] that uses prior knowl-
edge of the texture of a surface and that allows them to choose
markers. They are trying to match the markers with the ones on
the transformed surface and to create a map between them. They
are using a simplified approach where they have only a small
number of colours, which enables them to guess the original
colour on the image and to obtain lighting intensity at that point.

Pilet et al. [32] also perform image registration between an
image in its original form with no rotations in uniform lighting
conditions and the same image, which has different lighting,
occlusions or rotations. They are using the Expectation Max-
imisation framework that also provides visibility and lighting
maps. The resulting method is able to handle difficult lighting
conditions and occlusions.

Guo et al. [33] describe a method that operates under the
assumption that locally, the depth gradients are proportional to
the intensity gradients. They compute the texture coordinates by
solving an energy minimisation problem. The lighting problem is
solved by converting to YCbCr colour space and using the Y com-
ponent as the intensity value for the new texture colour.

Shen et al. describe a somewhat similar retexturing algorithm
[34] that works on high dynamic range images. They use image
luminance to create an approximate depth map, calculate gra-
dients of the depth map, and compute new texture coordinates
and colours based on the previously obtained depth gradient map.

Zelinka et al. describe a material replacement system [35]
where the interactively chosen area is retextured by first approx-
imating the surface normals by assuming the Lambertian reflec-
tion model and improving it with the Gaussian mixture model.
The new texture is synthesised with the jump-map technique.

Hilsmann and Eisert describe a method [36] that assumes a
uniformly coloured surface with a small, easily detectable textured
area on it. The texture is tracked with a video sequence using
optical flow, and the occlusions are estimated based on that
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motion. As the main original colour of the surface is previously
known, it is possible to easily estimate the lighting. In the textured
area the lighting is estimated by interpolation using the light
intensity of the uniformly coloured area.

Possible approaches to perform image registration for trans-
formed non-rigid surfaces are discussed by Bartoli and Zisserman
[37]. They are using Radial Basis Functions for regularising the
optical flow field. Chui and Rangarajan [38] also discuss the same
problem and propose a general point matching framework for
non-rigid surfaces that is based on thin-plate splines.

Pizarro and Bartoli [39] focused on solving the self-occlusion
problem; they used marker-based templates to reconstruct a
deformed surface, which enabled them to achieve good results in
retexturing.

The self-occlusion problem can also be solved by multiple
viewpoints from several cameras. This kind of stereo vision sys-
tems enables more accurate geometry reconstruction. This has
been studied by Pritchard and Heidrich [40] and by Scholz and
Magnor [41].

Hilsmann and Eisert [42] created a database of different body
positions at different levels of details to allow interactive visuali-
sation and retexturing of clothes. The models of their database are
Fig. 2. The retexturing results obtained by fixing β at 16

Fig. 3. The first example of the frames taken by the Kinect II camera, along with the resul
BFS algorithm is used.
created by using multiple images from different recalibrated
viewpoints. The retexturing process uses the details provided by
these models.

Khan et al. [43] create a rough reconstruction of a 3D surface by
assuming that 3D distances can be approximated using image
intensity. Texture coordinates are approximated based on the
obtained gradients of the constructed surface, and the shading is
based on interpolating between the original colour and the new
texture colour.

Guo et al. [44] approximate a 3D surface by creating a trian-
gulation based on several gradient-based feature points of the
image, and the approximation is further enhanced by employing a
refinement process based on the Poisson equation. The shading is
accomplished by combining the YCbCr luminance component of
the original image with the chroma components from the texture
image. This kind of approach works fairly well, but is unfortu-
nately limited to regions with sufficiently high luminance com-
ponents. In the case of darker surfaces, the Y component values are
often very low and the resulting retextured region would also be
very dark.

A somewhat similar approach is taken by Shen et al. [45], but
they use gradients of image intensity instead of a triangulation.
0 and changing α. (a) α¼0, (b) α ¼ 130, (c) α¼250.

ts of retexturing by the IRT, with five different texture images. For segmentation, the
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Based on the gradient field the Poisson equation is solved and the
results are used to compute texture domain coordinates. The
shading procedure is also based on the YCbCr colour space chroma
replacement.

Kerl et al. [46] describe a simple method for estimating the
pure albedo of the texture, in order to remove illumination effects
from IR and colour images using Kinect II RGB-D sensors. They
estimate the IR albedo from infrared and depth images, and
transfer the former to the colour image. Using this approach, it is
possible to create a colour shading model which includes all illu-
mination effects and the colour albedo image.

In comparison with a relevant approach, Hongzhi Wu and Kun
Zhou [47] introduce an interactive material acquisition system to
capture the spatially varying appearance of daily objects, using
Kinect. The system targets nonprofessional users, for capturing the
appearance approximation of an object. The output is a 3D model
Fig. 5. The third example of the frames taken by the Kinect II camera, along with the res
the BFS algorithm is used. This example shows one of the cases where due to the fact th
zones of different sizes and shapes, which incurs a higher amount of manual contributio
that have to be retextured.

Fig. 4. The second example of the frames taken by the Kinect II camera, along with the re
the BFS algorithm is used.
that can be retextured and shaded. The object is scanned by the
user who moves the Kinect sensor around the object. Our method
has the advantage of retexturing an object from a single Kinect
frame thereby reducing the errors caused by the movement of the
object.
4. Results and discussion

First of all, it should be noted that the Kinect has to be properly
calibrated, which could be accomplished using the process sug-
gested in [48], making use of the OpenCV camera calibration [49]
and the Kinect inverse disparity model [50]. In addition, the mis-
match between the RGB and IR images could be alleviated by
means of combining structured light with IR stereo [51], followed
by analysis on the distribution of IR emitters [52], if applicable.
ults of retexturing by the IRT, with three different texture images. For segmentation,
at the hair of the person appears on top of the garment, it is divided into multiple
n needed from the user, to help the GrabCut algorithm to properly detect the areas

sults of retexturing by the IRT, with five different texture images. For segmentation,



Fig. 6. Experimental results of implementing the proposed method on a video sequence. For segmentation, the GrabCut method is used.

Fig. 7. Experimental results demonstrating the robustness of the proposed method under variations of the lighting conditions, while introducing light sources of different
types and directions, including ceiling and study lights. The second row shows the retextured counterparts of the images in the first row. From left to right, the images are
presented from the darkest to the brightest ones. For segmentation, the GrabCut method is used.

E. Avots et al. / Computers & Graphics 59 (2016) 28–3834
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The experimental results of applying the IRT, using the BFS
algorithm for segmentation, with different reference textures,
along with the original frames, are shown in Figs. 3–5, which show
that the IRT produces realistic representations.

It is worth noticing that Fig. 5 demonstrates one of the cases
where the amount of manual input from the user will be higher
than average. The reason in most of those cases is that parts of the
body or other components of the scene appear on top of the gar-
ment, and divide its image into different zones, meaning that the
user will have to use the GrabCut more carefully, specifying a
higher number of points and curves, that would help it to handle
the boundaries of the smaller zones involved as well. For example,
in the foregoing figure, the hair of the person appears on top of the
garments, and divides its image into multiple parts, which might
be comparatively smaller. Nevertheless, the retexturing results
show that the IRT is capable of handling such cases properly.

Moreover, in order to demonstrate the efficiency of the pro-
posed method while being applied to video sequences, sample
implementation results are shown in Fig. 6, which could be more
clearly illustrated through the video available online, at http://
tinyurl.com/zwxlqrp. In addition, for examining its robustness
against possible changes in the lighting conditions, including
direction and intensity, as well as the albedo variations of the
cloth, and to ensure that the underlying notion, i.e. transferring
the IR information calculated on the Kinect II camera to that of an
indoor environment, is sound, the images taken under varying
lighting and environmental conditions are tested, and the results
are shown in Fig. 7, where light sources of different types,
including ceiling and study lights, are introduced from different
directions, but have not affected the performance of the algorithm.
Furthermore, for making sure that subject poses do not make
negative effects on the performance of the IRT, it is applied to
images of three subjects containing such variations, using the
textures shown in Fig. 9. The sample images are shown in Fig. 8,
along with their retextured counterparts, before and after shading,
being intended to demonstrate the effect and necessity of the
latter process in terms of realistic representation of all the details,
such as wrinkles. The results of retexturing the garments on the
same subjects while taking different poses, using the IRT, are
Fig. 8. Each sub-figure, from left to right, shows one of the subjects considered for testing
before and after shading, respectively. For segmentation, GrabCut is used.

Fig. 9. The texture images used for condu
illustrated in Fig. 10. The foregoing figures clearly substantiate the
robustness of the proposed retexturing system against numerous
changes of circumstances caused by the alterations of the real-life
physical conditions that might affect the practical use, although
they are not directly addressed in this study.

As most of the state-of-the-art methods rely on marker-based
or motion-based surface reconstruction, there are not many that
are suitable for comparison. On the other hand, all of the mar-
kerless approaches depend on the colour of the image, hence
making the comparison meaningless when using the textured
garment we are capable of dealing with. The most suitable choice
for comparison would be a method that is also using a depth
camera. Also, by using the infrared info we have a major advantage
that enables us to achieve colour and texture invariance that none
of the state-of-the-art methods have. It would be illogical to
compare the results using images of a textured garment for
methods that are not designed to handle it. For that reason, we use
a constrained set of reference textures for comparison: the refer-
ence texture shows garment with no texture, but some garments
have dark colours to demonstrate the inability of the state-of-the-
art methods to handle more challenging conditions and to
demonstrate the generality of our approach.

The results are compared with the method proposed by Shen
et al. [45] and with the method of Khan et al. [43]. These methods
were selected for comparison as they operate under conditions
somewhat similar to our method: Both methods use static images,
and do not depend on any prior knowledge about the surface
pattern i.e. they do not use any prepared markers for surface
reconstruction. For these reasons the method of Shen, Sun and the
method of Khan, Reinhard represent the state-of-the-art methods
that are the most suitable choices for comparison.

For the sake of clarity about the conditions of the comparison
we feel that it is necessary to mention that both the methods of
Shen et al. [45] and Khan et al. [43] use several input parameters
that need to be carefully adjusted to achieve results as good as
presented in their respective papers. In our comparison we
experimentally fixed those parameters with sensible values that
seemed to work reasonably well for most reference textures, but
we did not do any additional parameter tuning, as we are
the IRT on varying poses, with the original clothing and a sample retextured image,

cting the experiments using GrabCut.
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interested in comparing results that can be achieved automatically
and not results that could be achieved when using them as
interactive methods.

As there is no good metric to use for comparison, the mean
opinion score (MOS) was used. A number of retextured images
created by the IRT method, by the method of Shen and Sun [45],
and by the method of Khan and Reinhard [43] were shown to a
group of 40 people and everyone was asked to give their opinion
on which of the displayed three images looked the most realistic.
Fig. 10. The results of the implementation of the proposed method on instances of
the subjects shown in Fig. 3 with varying poses. For segmentation, the GrabCut
method is used.

Table 1
The mean opinion score (MOS) results.

Method Mean opinion score (MOS)

IRT 566 votes
Method of Shen et al. [45] 57 votes
Method of Khan et al. [43] 177 votes
In total there were 20 images created by the IRT method, 20
images created by the method of Shen, Sun and 20 images created
by the method of Khan, Reinhard. The overall results are shown in
Table 1 and results for each individual image separately are shown
in Fig. 11. The MOS results indicate that the IRT retexturing method
produces more realistic retextured images than the state-of-the-
art methods that were used for comparison. It can be seen that the
state-of-the-art methods achieve results of similar quality in cases
where the garment has brighter colours, but in case of darker
garments the results are clearly inferior according to the MOS
measurement.

A subset of the images used in MOS measurement are shown in
Fig. 12. Images (a), (d), (g), (j) were created with the IRT retex-
turing method, images (b), (e), (h), (k) were created using the
method of Shen, Sun [45] and images (c), (f), (i), (l) were created
using the method of Khan et al. [43] using the same original image
as input. In the case of the first 6 images (a)–(f), the images created
by the IRT method were assessed to be much more realistic
according to the MOS measurement. Images (g)–(l) demonstrate
cases where the state-of-the-art techniques used for comparison
achieved results of approximately the same quality as the IRT
method according to the MOS measurements.

Inspecting the images, one can see that in images (b), (c), (e),
(f) the lighting is quite unrealistic, whereas in images (a) and
(d) the lighting looks much more natural. That is probably also the
reason why images (a) and (c) achieved higher MOS scores. Images
(g)–(l) have a somewhat more similar quality of surface lighting. In
these cases the state-of-the-art methods were assessed to be
almost as good as the IRT method.

Overall it is shown that the method of Shen, Sun and the
method Khan, Reinhard both depend greatly on the original shirt
colour, whereas the IRT method does not depend on the original
colour or texture of the shirt. As expected, the other state-of-the-
art methods fail to produce realistic results when the original
colour of a shirt is dark and does not have much change in colour
intensity. The IRT method on the other hand somewhat depends
on the location of the IR emitter. If it is not located near the light
source then it might cause some lighting inconsistency artifacts.
Globally, the visual results and the MOS measurements indicate
that the proposed IRT method performs better than the state-of-
the-art methods in various conditions, producing much more
stable results and realistic retexturing. Additionally the method is
colour and texture invariant.

Fig. 5 illustrates the results of the IRT retexturing method on a
dress. Overall, the aforementioned experimental results show that
the generality of the IRT is sufficient for it to be applied to various
types of garments. In principle it can create a realistic retexturing
of any segmented object of the 3D scene.

The computational performance was also measured for the IRT
method and the state-of-the-art comparison methods. All the time
measurements were performed on a modern computer (Lenovo
Fig. 11. MOS results for each individual image.



Fig. 12. A subset of the images that were used in the MOS comparison. In each row,
from left to right, the images are created with the IRT, the method of Shen, Sun [45]
and the method of Khan, Reinhard [43], respectively. The number of votes each
image won is in its caption. For segmentation, the BFS algorithm has been used.

Table 2
Average computation times.

Method Time (s)

IRT Method 0.463
Method of Shen et al. [45] 14.232
Method of Khan et al. [43] 0.297
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Y510p) and the average of 20 measurements is shown in Table 2. It
can be seen that the IRT method and the method of Khan et al. [43]
can be used in real time scenarios, while the method of Shen et al.
requires more computational time. This is mainly casued by the
need to solve a very large linear system in order to solve the
Poisson equation. It is likely that the performance of all the
methods could be slightly improved by careful optimisation, but
the change should not be significant, at least not without reducing
the quality of the results.

It is worth noting that the notion of the IRT proposed in this
paper is adjusted to the characteristics of single-image applica-
tions. Nevertheless, if extended properly, it can be used while
incorporating the temporal information as well, for automatic
segmentation of humans in video sequences, which should be paid
due attention by the authors in the upcoming studies. The idea
suggested in [53] could be adopted for this purpose, where the
GrabCut is implemented only on the first frame, and the resulting
Gaussian Mixture Models (GMM) are propagated throughout the
next frames, thereby minimising the amount of input required
from the user, and automatising the rest of the segmentation
process.
5. Conclusion

This paper proposed a method for retexturing using the colour,
depth and infrared information provided by the Microsoft Kinect II
camera, with specific focus on shirt retexturing aimed at virtual
fitting applications. The shirt was semi-automatically segmented
out from the image, based on the colour markers and the depth
information, using the GrabCut algorithm. Depth and corre-
sponding 3D coordinates of the scene were used to create a tex-
ture map from the surface to the reference texture. As the main
contribution of the paper, a novel approach was proposed for
shading the textured surface using the infrared information, as it
indicates the light intensity at different parts of the surface,
according to which a linear transformation could be derived
mapping the pure colours to that of the image, being then applied
to the reference texture so as to mimic the illumination conditions
in a realistic manner. The results were deemed superior to that of
the state-of-the-art alternatives, as due to the foregoing novelty,
the proposed system is illumination- and pose-invariant. Future
works in this area should pay more particular attention to the
problems of self-occlusions and image albedo variations. As
regards the ongoing works, temporal information should be con-
sidered in the analyses, which was not yet addressed in this paper,
due to the fact that it was focused only on single-image applica-
tions. For doing so, a simple solution is just to perform GrabCut
semi-automatic segmentation on the first frame of a sequence, and
transfer the Gaussian Mixture Models to the subsequent frames, so
that the interaction for the segmentation task will be only required
on the first frame, and posterior segmentation and retexturing will
be fully automatic.
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