|
Frederic Sampedro, Sergio Escalera, Anna Domenech, & Ignasi Carrio. (2014). A computational framework for cancer response assessment based on oncological PET-CT scans. CBM - Computers in Biology and Medicine, 55, 92–99.
Abstract: In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.
Keywords: Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis
|
|
|
Andres Traumann, Gholamreza Anbarjafari, & Sergio Escalera. (2015). Accurate 3D Measurement Using Optical Depth Information. EL - Electronic Letters, 51(18), 1420–1422.
Abstract: A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II.
|
|
|
Ciprian Corneanu, Marc Oliu, Jeffrey F. Cohn, & Sergio Escalera. (2016). Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1548–1568.
Abstract: Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.
Keywords: Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal
|
|
|
Antonio Hernandez, Sergio Escalera, & Stan Sclaroff. (2016). Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures. IJCV - International Journal of Computer Vision, 118(1), 49–64.
Abstract: In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.
Keywords: Contextual rescoring; Poselets; Human pose estimation
|
|
|
Hugo Jair Escalante, Victor Ponce, Sergio Escalera, Xavier Baro, Alicia Morales-Reyes, & Jose Martinez-Carranza. (2017). Evolving weighting schemes for the Bag of Visual Words. Neural Computing and Applications - Neural Computing and Applications, 28(5), 925–939.
Abstract: The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
Keywords: Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision
|
|