|
Alicia Fornes, Josep Llados, Oriol Ramos Terrades and Marçal Rusiñol. 2016. La Visió per Computador com a Eina per a la Interpretació Automàtica de Fonts Documentals.
|
|
|
Arnau Baro, Pau Riba and Alicia Fornes. 2016. Towards the recognition of compound music notes in handwritten music scores. 15th international conference on Frontiers in Handwriting Recognition.
Abstract: The recognition of handwritten music scores still remains an open problem. The existing approaches can only deal with very simple handwritten scores mainly because of the variability in the handwriting style and the variability in the composition of groups of music notes (i.e. compound music notes). In this work we focus on this second problem and propose a method based on perceptual grouping for the recognition of compound music notes. Our method has been tested using several handwritten music scores of the CVC-MUSCIMA database and compared with a commercial Optical Music Recognition (OMR) software. Given that our method is learning-free, the obtained results are promising.
|
|
|
Joana Maria Pujadas-Mora, Alicia Fornes, Josep Llados and Anna Cabre. 2016. Bridging the gap between historical demography and computing: tools for computer-assisted transcription and the analysis of demographic sources. In K.Matthijs, S.Hin, H.Matsuo and J.Kok, eds. The future of historical demography. Upside down and inside out. Acco Publishers, 127–131.
|
|
|
Oriol Vicente, Alicia Fornes and Ramon Valdes. 2016. The Digital Humanities Network of the UABCie: a smart structure of research and social transference for the digital humanities. Digital Humanities Centres: Experiences and Perspectives.
|
|
|
Veronica Romero, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2016. Using the MGGI Methodology for Category-based Language Modeling in Handwritten Marriage Licenses Books. 15th international conference on Frontiers in Handwriting Recognition.
Abstract: Handwritten marriage licenses books have been used for centuries by ecclesiastical and secular institutions to register marriages. The information contained in these historical documents is useful for demography studies and
genealogical research, among others. Despite the generally simple structure of the text in these documents, automatic transcription and semantic information extraction is difficult due to the distinct and evolutionary vocabulary, which is composed mainly of proper names that change along the time. In previous
works we studied the use of category-based language models to both improve the automatic transcription accuracy and make easier the extraction of semantic information. Here we analyze the main causes of the semantic errors observed in previous results and apply a Grammatical Inference technique known as MGGI to improve the semantic accuracy of the language model obtained. Using this language model, full handwritten text recognition experiments have been carried out, with results supporting the interest of the proposed approach.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Sparse representation over learned dictionary for symbol recognition. SP, 125, 36–47.
Abstract: In this paper we propose an original sparse vector model for symbol retrieval task. More specically, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.
Keywords: Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary. Recent Trends in Image Processing and Pattern Recognition.
|
|
|
Pau Riba, Josep Llados and Alicia Fornes. 2017. Error-tolerant coarse-to-fine matching model for hierarchical graphs. In Pasquale Foggia, Cheng-Lin Liu and Mario Vento, eds. 11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition. Springer International Publishing, 107–117.
Abstract: Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting.
Keywords: Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching
|
|
|
Veronica Romero, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2017. Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology. In L.A. Alexandre, J.Salvador Sanchez and Joao M. F. Rodriguez, eds. 8th Iberian Conference on Pattern Recognition and Image Analysis.287–294. (LNCS.)
Abstract: Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.
Keywords: Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model
|
|
|
Pau Riba, Josep Llados, Alicia Fornes and Anjan Dutta. 2017. Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases. PRL, 87, 203–211.
Abstract: Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.
|
|