|
David Fernandez. 2014. Contextual Word Spotting in Historical Handwritten Documents. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: There are countless collections of historical documents in archives and libraries that contain plenty of valuable information for historians and researchers. The extraction of this information has become a central task among the Document Analysis researches and practitioners.
There is an increasing interest to digital preserve and provide access to these kind of documents. But only the digitalization is not enough for the researchers. The extraction and/or indexation of information of this documents has had an increased interest among researchers. In many cases, and in particular in historical manuscripts, the full transcription of these documents is extremely dicult due the inherent deciencies: poor physical preservation, dierent writing styles, obsolete languages, etc. Word spotting has become a popular an ecient alternative to full transcription. It inherently involves a high level of degradation in the images. The search of words is holistically
formulated as a visual search of a given query shape in a larger image, instead of recognising the input text and searching the query word with an ascii string comparison. But the performance of classical word spotting approaches depend on the degradation level of the images being unacceptable in many cases . In this thesis we have proposed a novel paradigm called contextual word spotting method that uses the contextual/semantic information to achieve acceptable results whereas classical word spotting does not reach. The contextual word spotting framework proposed in this thesis is a segmentation-based word spotting approach, so an ecient word segmentation is needed. Historical handwritten
documents present some common diculties that can increase the diculties the extraction of the words. We have proposed a line segmentation approach that formulates the problem as nding the central part path in the area between two consecutive lines. This is solved as a graph traversal problem. A path nding algorithm is used to nd the optimal path in a graph, previously computed, between the text lines. Once the text lines are extracted, words are localized inside the text lines using a word segmentation technique from the state of the
art. Classical word spotting approaches can be improved using the contextual information of the documents. We have introduced a new framework, oriented to handwritten documents that present a highly structure, to extract information making use of context. The framework is an ecient tool for semi-automatic transcription that uses the contextual information to achieve better results than classical word spotting approaches. The contextual information is
automatically discovered by recognizing repetitive structures and categorizing all the words according to semantic classes. The most frequent words in each semantic cluster are extracted and the same text is used to transcribe all them. The experimental results achieved in this thesis outperform classical word spotting approaches demonstrating the suitability of the proposed ensemble architecture for spotting words in historical handwritten documents using contextual information.
|
|
|
Lluis Pere de las Heras. 2014. Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Dierent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very specic problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on dierent data and on dierent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at dierent levels that are designed from a generic perspective. Firstly, we introduce three dierent strategies for the detection of symbols. The first method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The first one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological denition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2014. Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 25–37. (LNCS.)
Abstract: Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2014. Spotting Graphical Symbols in Camera-Acquired Documents in Real Time. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 3–10. (LNCS.)
Abstract: In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.
|
|
|
Marçal Rusiñol, V. Poulain d'Andecy, Dimosthenis Karatzas and Josep Llados. 2014. Classification of Administrative Document Images by Logo Identification. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 49–58.
Abstract: This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier’s graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
Keywords: Administrative Document Classification; Logo Recognition; Logo Spotting
|
|
|
L. Rothacker, Marçal Rusiñol, Josep Llados and G.A. Fink. 2014. A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting.
Abstract: With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline.
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades and Jose Miguel Benedi. 2015. Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2015. Efficient segmentation-free keyword spotting in historical document collections. PR, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades, Sergi Robles and Gemma Sanchez. 2015. CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool. IJDAR, 18(1), 15–30.
Abstract: Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.
|
|
|
G.Thorvaldsen and 6 others. 2015. A Tale of two Transcriptions.
Abstract: non-indexed
This article explains how two projects implement semi-automated transcription routines: for census sheets in Norway and marriage protocols from Barcelona. The Spanish system was created to transcribe the marriage license books from 1451 to 1905 for the Barcelona area; one of the world’s longest series of preserved vital records. Thus, in the Project “Five Centuries of Marriages” (5CofM) at the Autonomous University of Barcelona’s Center for Demographic Studies, the Barcelona Historical Marriage Database has been built. More than 600,000 records were transcribed by 150 transcribers working online. The Norwegian material is cross-sectional as it is the 1891 census, recorded on one sheet per person. This format and the underlining of keywords for several variables made it more feasible to semi-automate data entry than when many persons are listed on the same page. While Optical Character Recognition (OCR) for printed text is scientifically mature, computer vision research is now focused on more difficult problems such as handwriting recognition. In the marriage project, document analysis methods have been proposed to automatically recognize the marriage licenses. Fully automatic recognition is still a challenge, but some promising results have been obtained. In Spain, Norway and elsewhere the source material is available as scanned pictures on the Internet, opening up the possibility for further international cooperation concerning automating the transcription of historic source materials. Like what is being done in projects to digitize printed materials, the optimal solution is likely to be a combination of manual transcription and machine-assisted recognition also for hand-written sources.
Keywords: Nominative Sources; Census; Vital Records; Computer Vision; Optical Character Recognition; Word Spotting
|
|