|
Marçal Rusiñol, V. Poulain d'Andecy, Dimosthenis Karatzas and Josep Llados. 2014. Classification of Administrative Document Images by Logo Identification. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 49–58.
Abstract: This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier’s graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
Keywords: Administrative Document Classification; Logo Recognition; Logo Spotting
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades and Jose Miguel Bemedi. 2013. Page Segmentation of Structured Documents Using 2D Stochastic Context-Free Grammars. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 133–140. (LNCS.)
Abstract: In this paper we define a bidimensional extension of Stochastic Context-Free Grammars for page segmentation of structured documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the page segmentation is obtained as the most likely hypothesis according to a grammar. This approach is compared to Conditional Random Fields and results show significant improvements in several cases. Furthermore, grammars provide a detailed segmentation that allowed a semantic evaluation which also validates this model.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro and Giuseppe Boccignone. 2013. Towards Modelling an Attention-Based Text Localization Process. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 296–303. (LNCS.)
Abstract: This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.
Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.
Keywords: text localization; visual attention; eye guidance
|
|
|
Nuria Cirera, Alicia Fornes, Volkmar Frinken and Josep Llados. 2013. Hybrid grammar language model for handwritten historical documents recognition. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 117–124. (LNCS.)
Abstract: In this paper we present a hybrid language model for the recognition of handwritten historical documents with a structured syntactical layout. Using a hidden Markov model-based recognition framework, a word-based grammar with a closed dictionary is enhanced by a character sequence recognition method. This allows to recognize out-of-dictionary words in controlled parts of the recognition, while keeping a closed vocabulary restriction for other parts. While the current status is work in progress, we can report an improvement in terms of character error rate.
|
|
|
Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen and Horst Bunke. 2013. A Fast Matching Algorithm for Graph-Based Handwriting Recognition. 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition. Springer Berlin Heidelberg, 194–203. (LNCS.)
Abstract: The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel and Josep Llados. 2012. Improving Fuzzy Multilevel Graph Embedding through Feature Selection Technique. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer Berlin Heidelberg, 243–253. (LNCS.)
Abstract: Graphs are the most powerful, expressive and convenient data structures but there is a lack of efficient computational tools and algorithms for processing them. The embedding of graphs into numeric vector spaces permits them to access the state-of-the-art computational efficient statistical models and tools. In this paper we take forward our work on explicit graph embedding and present an improvement to our earlier proposed method, named “fuzzy multilevel graph embedding – FMGE”, through feature selection technique. FMGE achieves the embedding of attributed graphs into low dimensional vector spaces by performing a multilevel analysis of graphs and extracting a set of global, structural and elementary level features. Feature selection permits FMGE to select the subset of most discriminating features and to discard the confusing ones for underlying graph dataset. Experimental results for graph classification experimentation on IAM letter, GREC and fingerprint graph databases, show improvement in the performance of FMGE.
|
|
|
Volkmar Frinken, Alicia Fornes, Josep Llados and Jean-Marc Ogier. 2012. Bidirectional Language Model for Handwriting Recognition. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer Berlin Heidelberg, 611–619. (LNCS.)
Abstract: In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2012. Hierarchical graph representation for symbol spotting in graphical document images. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer Berlin Heidelberg, 529–538. (LNCS.)
Abstract: Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Jaume Gibert, Ernest Valveny, Horst Bunke and Alicia Fornes. 2012. On the Correlation of Graph Edit Distance and L1 Distance in the Attribute Statistics Embedding Space. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer-Berlag, Berlin, 135–143. (LNCS.)
Abstract: Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In particular, it is usually desired that distances between pairs of graphs in the graph domain closely resemble those between their corresponding vectorial representations. In this work, we analyse relations between the edit distance in the graph domain and the L1 distance of the attribute statistics based embedding, for which good classification performance has been reported on various datasets. We show that there is actually a high correlation between the two kinds of distances provided that the corresponding parameter values that account for balancing the weight between node and edge based features are properly selected.
|
|
|
Oriol Ramos Terrades, N. Serrano, Albert Gordo, Ernest Valveny and Alfons Juan-Ciscar. 2010. Interactive-predictive detection of handwritten text blocks. 17th Document Recognition and Retrieval Conference, part of the IS&T-SPIE Electronic Imaging Symposium.75340Q–75340Q–10.
Abstract: A method for text block detection is introduced for old handwritten documents. The proposed method takes advantage of sequential book structure, taking into account layout information from pages previously transcribed. This glance at the past is used to predict the position of text blocks in the current page with the help of conventional layout analysis methods. The method is integrated into the GIDOC prototype: a first attempt to provide integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. Results are given in a transcription task on a 764-page Spanish manuscript from 1891.
|
|