|
Mohammed Al Rawi and Ernest Valveny. 2019. Compact and Efficient Multitask Learning in Vision, Language and Speech. IEEE International Conference on Computer Vision Workshops.2933–2942.
Abstract: Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.
|
|
|
Lluis Pere de las Heras, Ernest Valveny and Gemma Sanchez. 2013. Combining structural and statistical strategies for unsupervised wall detection in floor plans. 10th IAPR International Workshop on Graphics Recognition.
Abstract: This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich and Enric Marti. 2002. Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching. Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002.502–507.
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Combining Focus Measure Operators to Predict OCR Accuracy in Mobile-Captured Document Images. 11th IAPR International Workshop on Document Analysis and Systems.181–185.
Abstract: Mobile document image acquisition is a new trend raising serious issues in business document processing workflows. Such digitization procedure is unreliable, and integrates many distortions which must be detected as soon as possible, on the mobile, to avoid paying data transmission fees, and losing information due to the inability to re-capture later a document with temporary availability. In this context, out-of-focus blur is major issue: users have no direct control over it, and it seriously degrades OCR recognition. In this paper, we concentrate on the estimation of focus quality, to ensure a sufficient legibility of a document image for OCR processing. We propose two contributions to improve OCR accuracy prediction for mobile-captured document images. First, we present 24 focus measures, never tested on document images, which are fast to compute and require no training. Second, we show that a combination of those measures enables state-of-the art performance regarding the correlation with OCR accuracy. The resulting approach is fast, robust, and easy to implement in a mobile device. Experiments are performed on a public dataset, and precise details about image processing are given.
|
|
|
Oriol Ramos Terrades, Salvatore Tabbone and Ernest Valveny. 2006. Combination of shape descriptors using an adaptation of boosting.
|
|
|
Anjan Dutta, Jaume Gibert, Josep Llados, Horst Bunke and Umapada Pal. 2012. Combination of Product Graph and Random Walk Kernel for Symbol Spotting in Graphical Documents. 21st International Conference on Pattern Recognition.1663–1666.
Abstract: This paper explores the utilization of product graph for spotting symbols on graphical documents. Product graph is intended to find the candidate subgraphs or components in the input graph containing the paths similar to the query graph. The acute angle between two edges and their length ratio are considered as the node labels. In a second step, each of the candidate subgraphs in the input graph is assigned with a distance measure computed by a random walk kernel. Actually it is the minimum of the distances of the component to all the components of the model graph. This distance measure is then used to eliminate dissimilar components. The remaining neighboring components are grouped and the grouped zone is considered as a retrieval zone of a symbol similar to the queried one. The entire method works online, i.e., it doesn't need any preprocessing step. The present paper reports the initial results of the method, which are very encouraging.
|
|
|
Miquel Ferrer and Ernest Valveny. 2007. Combination of OCR Engines for Page Segmentation based on Performance Evaluation. 9th International Conference on Document Analysis and Recognition.784–788.
|
|
|
Sophie Wuerger, Kaida Xiao, Chenyang Fu and Dimosthenis Karatzas. 2010. Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes. OPO, 30(5), 635–659.
Abstract: The purpose of this study was to assess whether age-related chromatic sensitivity changes are associated with corresponding changes in hue perception in a large sample of colour-normal observers over a wide age range (n = 185; age range: 18-75 years). In these observers we determined both the sensitivity along the protan, deutan and tritan line; and settings for the four unique hues, from which the characteristics of the higher-order colour mechanisms can be derived. We found a significant decrease in chromatic sensitivity due to ageing, in particular along the tritan line. From the unique hue settings we derived the cone weightings associated with the colour mechanisms that are at equilibrium for the four unique hues. We found that the relative cone weightings (w(L) /w(M) and w(L) /w(S)) associated with the unique hues were independent of age. Our results are consistent with previous findings that the unique hues are rather constant with age while chromatic sensitivity declines. They also provide evidence in favour of the hypothesis that higher-order colour mechanisms are equipped with flexible cone weightings, as opposed to fixed weights. The mechanism underlying this compensation is still poorly understood.
|
|
|
Maria Vanrell, Felipe Lumbreras, A. Pujol, Ramon Baldrich, Josep Llados and Juan J. Villanueva. 2001. Colour Normalisation Based on Background Information..
|
|
|
Farshad Nourbakhsh. 2009. Colour logo recognition. (Master's thesis, .)
|
|