|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2010. Seal Object Detection in Document Images using GHT of Local Component Shapes. 10th ACM Symposium On Applied Computing.23–27.
Abstract: Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents.
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2009. Seal detection and recognition: An approach for document indexing. 10th International Conference on Document Analysis and Recognition.101–105.
Abstract: Reliable indexing of documents having seal instances can be achieved by recognizing seal information. This paper presents a novel approach for detecting and classifying such multi-oriented seals in these documents. First, Hough Transform based methods are applied to extract the seal regions in documents. Next, isolated text characters within these regions are detected. Rotation and size invariant features and a support vector machine based classifier have been used to recognize these detected text characters. Next, for each pair of character, we encode their relative spatial organization using their distance and angular position with respect to the centre of the seal, and enter this code into a hash table. Given an input seal, we recognize the individual text characters and compute the code for pair-wise character based on the relative spatial organization. The code obtained from the input seal helps to retrieve model hypothesis from the hash table. The seal model to which we get maximum hypothesis is selected for the recognition of the input seal. The methodology is tested to index seal in rotation and size invariant environment and we obtained encouraging results.
|
|
|
Sounak Dey and 6 others. 2017. Script independent approach for multi-oriented text detection in scene image. NEUCOM, 242, 96–112.
Abstract: Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.
|
|
|
Ali Furkan Biten and 7 others. 2019. Scene Text Visual Question Answering. 18th IEEE International Conference on Computer Vision.4291–4301.
Abstract: Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting highlevel semantic information present in images as textual cues in the Visual Question Answering process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research.
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2014. Scene Text Recognition: No Country for Old Men? 1st International Workshop on Robust Reading.
|
|
|
H. Chouaib, Salvatore Tabbone, Oriol Ramos Terrades, F. Cloppet, N. Vincent and A.T. Thierry Paquet. 2008. Sélection de Caractéristiques à partir d'un algorithme génétique et d'une combinaison de classifieurs Adaboost. Colloque International Francophone sur l'Ecrit et le Document.181–186.
|
|
|
Lluis Pere de las Heras, David Fernandez, Alicia Fornes, Ernest Valveny, Gemma Sanchez and Josep Llados. 2014. Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 135–146. (LNCS.)
Abstract: This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.
Keywords: Graphics recognition; Graphics retrieval; Image classification
|
|
|
Lluis Pere de las Heras, David Fernandez, Alicia Fornes, Ernest Valveny, Gemma Sanchez and Josep Llados. 2013. Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans. 10th IAPR International Workshop on Graphics Recognition.
|
|
|
Sangheeta Roy and 6 others. 2018. Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video. PR, 80, 64–82.
Abstract: Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Keywords: Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez and Dimosthenis Karatzas. 2010. Rotation Invariant Hand-Drawn Symbol Recognition based on a Dynamic Time Warping Model. IJDAR, 13(3), 229–241.
Abstract: One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the dynamic time warping (DTW) algorithm. The symbols are described by vector sequences, a variation of the DTW distance is used for computing the matching distance, and K-Nearest Neighbor is used to classify them. Our approach has been evaluated in two benchmarking scenarios consisting of hand-drawn symbols. Compared with state-of-the-art methods for symbol recognition, our method shows higher tolerance to the irregular deformations induced by hand-drawn strokes.
|
|