|
Alicia Fornes, Josep Llados, Gemma Sanchez and Dimosthenis Karatzas. 2010. Rotation Invariant Hand-Drawn Symbol Recognition based on a Dynamic Time Warping Model. IJDAR, 13(3), 229–241.
Abstract: One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the dynamic time warping (DTW) algorithm. The symbols are described by vector sequences, a variation of the DTW distance is used for computing the matching distance, and K-Nearest Neighbor is used to classify them. Our approach has been evaluated in two benchmarking scenarios consisting of hand-drawn symbols. Compared with state-of-the-art methods for symbol recognition, our method shows higher tolerance to the irregular deformations induced by hand-drawn strokes.
|
|
|
Lei Kang. 2020. Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
|
|
|
Sangeeth Reddy, Minesh Mathew, Lluis Gomez, Marçal Rusiñol, Dimosthenis Karatzas and C.V. Jawahar. 2020. RoadText-1K: Text Detection and Recognition Dataset for Driving Videos. IEEE International Conference on Robotics and Automation.
Abstract: Perceiving text is crucial to understand semantics of outdoor scenes and hence is a critical requirement to build intelligent systems for driver assistance and self-driving. Most of the existing datasets for text detection and recognition comprise still images and are mostly compiled keeping text in mind. This paper introduces a new ”RoadText-1K” dataset for text in driving videos. The dataset is 20 times larger than the existing largest dataset for text in videos. Our dataset comprises 1000 video clips of driving without any bias towards text and with annotations for text bounding boxes and transcriptions in every frame. State of the art methods for text detection,
recognition and tracking are evaluated on the new dataset and the results signify the challenges in unconstrained driving videos compared to existing datasets. This suggests that RoadText-1K is suited for research and development of reading systems, robust enough to be incorporated into more complex downstream tasks like driver assistance and self-driving. The dataset can be found at http://cvit.iiit.ac.in/research/
projects/cvit-projects/roadtext-1k
|
|
|
Raul Gomez, Yahui Liu, Marco de Nadai, Dimosthenis Karatzas, Bruno Lepri and Nicu Sebe. 2020. Retrieval Guided Unsupervised Multi-domain Image to Image Translation. 28th ACM International Conference on Multimedia.
Abstract: Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
|
|
|
Joan Mas, J.A. Jorge, Gemma Sanchez and Josep Llados. 2008. Representing and Parsing Sketched Symbols using Adjacency Grammars and a Grid-Directed Parser. In W. Liu, J.L., J.M. Ogier, ed. Graphics Recognition: Recent Advances and New Opportunities,.176–187. (LNCS.)
|
|
|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité. Colloque International Francophone sur l'Écrit et le Document.233–248.
Abstract: Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
Keywords: word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example
|
|
|
Ernest Valveny, Philippe Dosch and Alicia Fornes. 2008. Report on the Third Contest on Symbol Recognition. In W. Liu, J.L., J.M. Ogier, ed. Graphics Recognition: Recent Advances and New Opportunities.321–328. (LNCS.)
|
|
|
Philippe Dosch and Ernest Valveny. 2006. Report on the Second Symbol Recognition Contest. Graphics Recognition: Ten Years Review and Future Perspectives, W. Liu, J. Llados (Eds.), LNCS 3926: 381–397.
|
|
|
Lluis Pere de las Heras. 2014. Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Dierent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very specic problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on dierent data and on dierent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at dierent levels that are designed from a generic perspective. Firstly, we introduce three dierent strategies for the detection of symbols. The first method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The first one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological denition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
|
|
|
Marçal Rusiñol, Agnes Borras and Josep Llados. 2010. Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images. PRL, 31(3), 188–201.
Abstract: This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results.
Keywords: Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings
|
|