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Abstract

Current visual question answering datasets do not con-

sider the rich semantic information conveyed by text within

an image. In this work, we present a new dataset, ST-VQA,

that aims to highlight the importance of exploiting high-

level semantic information present in images as textual cues

in the Visual Question Answering process. We use this

dataset to define a series of tasks of increasing difficulty for

which reading the scene text in the context provided by the

visual information is necessary to reason and generate an

appropriate answer. We propose a new evaluation metric

for these tasks to account both for reasoning errors as well

as shortcomings of the text recognition module. In addition

we put forward a series of baseline methods, which provide

further insight to the newly released dataset, and set the

scene for further research.

1. Introduction

Textual content in man-made environments conveys im-

portant high-level semantic information that is explicit and

not available in any other form in the scene. Interpreting

written information in man-made environments is essential

in order to perform most everyday tasks like making a pur-

chase, using public transportation, finding a place in the

city, getting an appointment, or checking whether a store

is open or not, to mention just a few.

Text is present in about 50% of the images in large-scale

datasets such as MS Common Objects in Context [53] and

the percentage goes up sharply in urban environments. It

is thus fundamental to design models that take advantage

of these explicit cues. Ensuring that scene text is properly

accounted for is not a marginal research problem, but quite

central for holistic scene interpretation models.

The research community on reading systems has made

significant advances over the past decade [26, 15]. The

∗Equal contribution.

Q: What is the price of the ba-
nanas per kg?

A: $11.98

Q: What does the red sign
say?

A: Stop

Q: Where is this train going?

A: To New York
A: New York

Q: What is the exit number on
the street sign?

A: 2
A: Exit 2

Figure 1. Recognising and interpreting textual content is essential

for scene understanding. In the Scene Text Visual Question An-

swering (ST-VQA) dataset leveraging textual information in the

image is the only way to solve the QA task.

current state of the art in scene text understanding allows

endowing computer vision systems with basic reading ca-

pacity, although the community has not yet exploited this

towards solving higher level problems.

At the same time, current Visual Question Answering

(VQA) datasets and models present serious limitations as

a result of ignoring scene text content, with disappointing

results on questions that require scene text understanding.

We therefore consider it is timely to bring together these

two research lines in the VQA domain. To move towards

more human like reasoning, we contemplate that grounding

question answering both on the visual and the textual in-
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formation is necessary. Integrating the textual modality in

existing VQA pipelines is not trivial. On one hand, spot-

ting relevant textual information in the scene requires per-

forming complex reasoning about positions, colors, objects

and semantics, to localise, recognise and eventually inter-

pret the recognised text in the context of the visual content,

or any other contextual information available. On the other

hand, current VQA models work mostly on the principle of

classical [44] and operant (instrumental) conditioning [51].

Such models, display important dataset biases [23] as well

as failures in counting [9, 1], comparing and identifying at-

tributes. These limitations make current models unsuitable

to directly integrate scene text information which is often

orthogonal and uncorrelated to the visual statistics of the

image.

To this end, in this work we propose a new dataset, called

Scene Text Visual Question Answering (ST-VQA) where the

questions and answers are attained in a way that questions

can only be answered based on the text present in the image.

We consciously draw the majority (85.5%) of ST-VQA im-

ages from datasets that have generic question/answer pairs

that can be combined with ST-VQA to establish a more

generic, holistic VQA task. Some sample images and ques-

tions from the collected dataset are shown in Figure 1.

Additionally, we introduce three tasks of increasing dif-

ficulty that simulate different degrees of availability of con-

textual information. Finally, we define a new evaluation

metric to better discern the models’ answering ability, that

employs the Levenshtein distance [34] to account both for

reasoning errors as well as shortcomings of the text recog-

nition subsystem [15]. The dataset, as well as performance

evaluation scripts and an online evaluation service are avail-

able through the ST-VQA Web portal1.

2. Related Work

The task of text detection and recognition in natural im-

ages sets the starting point for a generalized VQA system

that can integrate textual cues towards complete scene un-

derstanding. The most common approach in the reading

systems community consists of two steps, text detection and

recognition. Several works have been proposed addressing

text detection such as [36, 35, 60, 21] which are mostly

based on Fully Convolutional Neural Networks.

Text recognition methods such as the one presented

in [22] propose recognizing text at the word level as a

classification problem (word spotting) from a 90K English

words vocabulary. Approaches that use Connectionist Tem-

poral Classification have also been widely used in scene text

recognition, in works such as [47, 7, 57, 12, 38], among

others. Later works focus towards end-to-end architectures

such as the ones presented by [8, 39, 20], which mostly con-

1https://rrc.cvc.uab.es/?ch=11

sist of an initial Convolutional Neural Network (CNN) that

acts as an encoder and a Long Short Term Memory (LSTM)

combined with attention that acts as the decoder.

Visual Question Answering (VQA) aims to come up with

an answer to a given natural language question about the

image. Since its introduction, VQA has received a lot of

attention from the Computer Vision community [4, 11, 46,

16, 23, 2] facilitated by access to large-scale datasets that

allow the training of VQA models [4, 16, 33, 58, 52, 40].

Despite VQA’s popularity, none of the existing datasets ex-

cept TextVQA (reviewed separately next) consider textual

content, while in our work, exploiting textual information

found in the images is the only way to solve the VQA task.

Related to the task proposed in this paper, are the recent

works of Kafle et al. [24] and Kahou et al. [25] on question

answering for bar charts and diagrams, the work of Kise

at al. [32] on QA for machine printed document images,

and the work of Kembhavi et al. [29] on textbook ques-

tion answering. The Textbook Question Answering (TQA)

dataset [29] aims at answering multimodal questions given

a context of text, diagrams and images, but textual infor-

mation is provided in computer readable format. This is not

the case for the diagrams and charts of the datasets proposed

in [24, 25], meaning that models require some sort of text

recognition to solve such QA tasks. However, the text found

on these datasets is rendered in standard font types and with

good quality, and thus represents a less challenging setup

than the scene text used in our work.

TextVQA [50] is a concurrent work to the one presented

here. Similarly to ST-VQA, TextVQA proposes an alterna-

tive dataset for VQA which requires reading and reasoning

about scene text. Additionally, [50] also introduces a novel

architecture that combines a standard VQA model [49] and

an independently trained OCR module [7] with a “copy”

mechanism, inspired by pointer networks [54, 17], which

allows to use OCR recognized words as predicted answers

if needed. Both TextVQA and ST-VQA datasets are con-

ceptually similar, although there are important differences

in the implementation and design choices. We offer here

a high-level summary of key differences, while section 3.2

gives a quantitative comparison between the two datasets.

In the case of ST-VQA, a number of different source im-

age datasets were used, including scene text understanding

ones, while in the case of TextVQA all images come from

a single source, the Open Images dataset. To select the im-

ages to annotate for the ST-VQA, we explicitly required a

minimum amount of two text instances to be present, while

in TextVQA images were sampled on a category basis, em-

phasizing categories that are expected to contain text. In

terms of the questions provided, ST-VQA focuses on ques-

tions that can be answered unambiguously directly using

part of the image text as answer, while in TextVQA any

question requiring reading the image text is allowed.
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Despite the differences, the two datasets are highly com-

plementary as the image sources used do not intersect with

each other, creating an opportunity for transfer learning be-

tween the two datasets and maybe combining data for train-

ing models with greater generalization capabilities.

3. ST-VQA Dataset

3.1. Data Collection

In this section we describe the process for collecting im-

ages, questions and answers for the ST-VQA dataset, and

offer an in-depth analysis of the collected data. Subse-

quently, we detail the proposed tasks and introduce the eval-

uation metric.

Images: The ST-VQA dataset comprises 23, 038 im-

ages sourced from a combination of public datasets that

include both scene text understanding datasets as well as

generic computer vision ones. In total, we used six different

datasets, namely: ICDAR 2013[27] and ICDAR2015[26],

ImageNet [10], VizWiz[18], IIIT Scene Text Retrieval[42],

Visual Genome [33] and COCO-Text [53]. A key bene-

fit of combining images from various datasets is the reduc-

tion of dataset bias such as selection, capture and negative

set bias which have been shown to exist in popular image

datasets[30]. Consequently, the combination of datasets re-

sults in a greater variability of questions. To automatically

select images to define questions and answers, we use an

end-to-end single shot text retrieval architecture [13]. We

automatically select all images that contain at least 2 text

instances thus ensuring that the proposed questions contain

at least 2 possible options as an answer. The final number

of images and questions per dataset can be found in Table 1.

Original Dataset Images Questions

Coco-text 7,520 10,854

Visual Genome 8,490 11,195

VizWiz 835 1,303

ICDAR 1,088 1,423

ImageNet 3,680 5,165

IIIT-STR 1,425 1,890

Total 23,038 31,791

Table 1. Number of images and questions gathered per dataset.

Question and Answers: The ST-VQA dataset com-

prises 31, 791 questions. To gather the questions and an-

swers of our dataset, we used the crowd-sourcing platform

Amazon Mechanical Turk (AMT). During the collection of

questions and answers, we encouraged workers to come up

with closed-ended questions that can be unambiguously an-

swered with text found in the image, prohibiting them to

ask yes/no questions or questions that can be answered only

based on the visual information.

The process of collecting question and answer pairs con-

sisted of two steps. First, the workers were given an image

along with instructions asking them to come up with a ques-

tion that can be answered using the text found in the image.

The workers were asked to write up to three question and

answer pairs. Then, as a verification step, we perform a sec-

ond AMT task that consisted of providing different workers

with the image and asking them to respond to the previ-

ously defined question. We filtered the questions for which

we did not obtain the same answer in both steps, in order

to remove ambiguous questions. The ambiguous questions

were checked by the authors and corrected if necessary, be-

fore being added to the dataset. In some cases both answers

were deemed correct and accepted, therefore ST-VQA ques-

tions have up to two different valid answers.

In total, the proposed ST-VQA dataset comprises 23, 038
images with 31, 791 questions/answers pair separated into

19, 027 images - 26, 308 questions for training and 2, 993
images - 4, 163 questions for testing. We present examples

of question and answers of our dataset in Figure 1.

3.2. Analysis and Comparison with TextVQA

In Figure 2 we provide the length distribution for the

gathered questions and answers of the ST-VQA datasets,

in comparison to the recently presented TextVQA. It can

be observed that the length statistics of the two datasets are

closely related.
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Figure 2. Percentage of questions (top) and answers (bottom) that

contain a specific number of words.

To further explore the statistics of our dataset, Figure 3

visualises how the ST-VQA questions are formed. As it

can be appreciated, our questions start with “What, Where,

Which, How and Who”. A considerable percentage starts

with “What” questions, as expected given the nature of the

task. A critical point to realize however, is that the questions

are not explicitly asking for specific text that appears in the

scene; rather they are formulated in a way that requires to

have certain prior world knowledge/experience. For exam-

ple, some of the “what” questions inquire about a brand,

website, name, bus number, etc., which require some ex-

plicit knowledge about what a brand or website is.

There has been a lot of effort to deal with the language
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prior inside the datasets [16, 23, 59]. One of the reasons for

having language priors in datasets is the uneven distribution

of answers in the dataset. In VQA v1 [4], since the dataset

is formed from the images of MSCOCO [37], the answers

to the question of “what sport ...” are tennis and baseball

over 50%. Another example is the question “is there ...”,

having yes as an answer in over 70% of the cases. As can

be seen from Figure 4, our dataset apart from the “sign”

and “year” questions follows a uniform distribution for the

answers, reducing the risk of language priors while having

a big vocabulary for the answers.
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Figure 3. Distribution of questions in the ST-VQA train set by their

starting 4-grams (ordered from center to outwards). Words with a

small contribution are not shown for better visualization.

To put ST-VQA in perspective, VQA 2.0 [16], the

biggest dataset in the community, contains 1.1 million ques-

tions out of which only 8k, corresponding to less than 1%
of the total questions, requires reading the text in the im-

age. The TextVQA [50] dataset on the other hand comprises

28, 408 images paired with 45, 336 questions.

As a result of the different collection procedures fol-

lowed, all ST-VQA questions can be answered unambigu-

ously directly using the text in the image, while in the case

of TextVQA reportedly 39% (18k) of the answers do not

contain any of the OCR tokens 2. This might be either due

to the type of the questions defined, or due to shortcomings

of the employed text recognition engine.

The fact that ST-VQA answers are explicitly grounded

to the scene text, allows us to collect a single answer per

question To consider an answer as correct, we introduce a

2Presentation of the TextVQA Challenge, CVPR 2019

soft metric that requires it to have a small edit distance to

the correct answer (see section 3.4), factoring this way in

the evaluation procedure the performance of the text recog-

nition sub-system. In the case of TextVQA, 10 answers

are collected per question and any answer supported by at

least three subjects is considered correct. In order to bet-

ter understand the effects of our approach compared to col-

lecting multiple responses like in TextVQA, we performed

an experiment collecting 10 answers for a random subset

of 1, 000 ST-VQA questions. Our analysis showed that in

84.1% of the cases there is agreement between the major-

ity of subjects and the original answer. The same metric

for TextVQA is 80.3%, confirming that defining a single

unambiguous answer results in similarly low ambiguity at

evaluation time.

3.3. Tasks

We define 3 novel tasks, suitable for the ST-VQA

dataset, namely “strongly contextualised”, “weakly contex-

tualised” and “open vocabulary”.

The proposed differentiation of tasks can be interpreted

by how humans make use of prior knowledge to argue about

their current situation. Such prior knowledge in ST-VQA is

provided as a dictionary, different for each task. Similar ap-

proaches using dynamic per-image dictionaries have been

used for DVQA in [24] and for scene text understanding

in [26]. Our formulation of the tasks is inspired by the pre-

vious notions and the difficulty per task increases gradu-

ally. In the strongly contextualised task we capture this prior

knowledge by creating a dictionary per image for the spe-

cific scenario depicted. In the weakly contextualised task

we provide a single dictionary comprising all the words in

the answers of the dataset. Finally, for the open dictionary

task, we treat the problem as tabula rasa where no a priori

and no external information is available to the model.

For the strongly contextualised task (1), following the

standard practice used for end-to-end word spotting [27,

26, 55], we create a dictionary per image that contains the

words that appear in the answers defined for questions on

that image, along with a series of distractors. The distrac-

tors are generated in two ways. On one hand, they comprise

instances of scene text as returned by a text recogniser ap-

plied on the image. On the other hand, they comprise words

obtained by exploiting the semantic understanding of the

scene, in the form of the output of a dynamic lexicon gen-

eration model [43, 14]. The dictionary for the strongly con-

textualised task is 100 words long and defined per image.

In the weakly contextualised task (2), we provide a

unique dictionary of 30, 000 words for all the datasets’ im-

ages which is formed by collecting all the 22k ground truth

words plus 8k distractors generated in the same way as in

the previous task. Finally for the open dictionary task (3),

we provide no extra information thus we can consider it as
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Figure 4. Distribution of answers for different types of questions in the ST-VQA train set. Each color represents a different unique answer.

an open-lexicon task.

By proposing the aforementioned tasks the VQA prob-

lem is conceived in a novel manner that has certain advan-

tages. First, it paves the way for research on automatically

processing and generating such prior information, and its

effect on the model design and performance. Second, it

provides an interesting training ground for end-to-end read-

ing systems, where the provided dictionaries can be used to

prime text spotting methods.

3.4. Evaluation and Open Challenge

Since the answers of our dataset are contained within the

text found in the image, which is dependent on the accu-

racy of the OCR being employed, the classical evaluation

metric of VQA tasks is not optimum for our dataset, e.g.

if the model reasons properly about the answer but makes

a mistake of a few characters in the recognition stage, like

in Figure 6 (first row, third column), the typical accuracy

score would be 0. However, the metric we propose named

Average Normalized Levenshtein Similarity (ANLS) would

give an intermediate score between 0.5 and 1 that will softly

penalise the OCR mistakes. Thus, a motivation of defining

a metric that captures OCR accuracy as well as model rea-

soning is evident. To this end, in all 3 tasks we use the nor-

malized Levenshtein similarity [34] as an evaluation metric.

More formally, we define ANLS as follows:

ANLS =
1

N

N
∑

i=0

(

max
j

s(aij , oqi)

)

(1)

s(aij , oqi) =

{

(1−NL(aij , oqi)) if NL(aij , oqi) < τ

0 if NL(aij , oqi) > τ

where N is the total number of questions in the dataset,

M is the total number of GT answers per question, aij
are the ground truth answers where i = {0, ..., N}, and

j = {0, ...,M}, and oqi is the network’s answer for the

ith question qi. NL(aij , oqi) is the normalized Levenshtein

distance between the strings aij and oqi (notice that the nor-

malized Levenshtein distance is a value between 0 and 1).

We define a threshold τ = 0.5 that penalizes metrics larger

than this value, thus the final score will be 0 if the NL is

larger than τ . The intuition behind the threshold is that if an

output has an edit distance of more than 0.5 to an answer,

meaning getting half of the answer wrong, we reason that

the output is the wrong text selected from the options as an

answer. Otherwise, the metric has a smooth response that

can gracefully capture errors in text recognition.

In addition, we provide an online service where the open

challenge was hosted [5], that researchers can use to evalu-

ate their methods against a public validation/test dataset.

4. Baselines and Results

The following section describes the baselines employed

in this work as well as an analysis of the results obtained

in the experiments conducted. The proposed baselines help

us to showcase the difficulty of the proposed dataset and its

tasks. Aside from baselines designed to exploit all the in-

formation available (visual information, scene text, and the

question), we have purposely included baselines that ignore

one or more of the available pieces of information in order

to establish lower bounds of performance. The following

baselines are employed to evaluate the datasets:

Random: As a way of assessing aimless chance, we re-

turn a random word from the dictionary provided for each

task (see section 3.3 for more detail).

Scene Text Retrieval: This baseline leverages a single

shot CNN architecture [13] that predicts at the same time

bounding boxes and a Pyramidal Histogram Of Characters

(PHOC) [3]. The PHOC is a compact representation of a

word that considers the spatial location of each character to

construct the resulting encoding. This baseline ignores the

question and any other visual information of the image.

We have defined two approaches: the first (“STR re-

trieval”) uses the specific task dictionaries as queries to a

given image, and the top-1 retrieved word is returned as the
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answer; the second one (“STR bbox”), follows the intuition

that humans tend to formulate questions about the largest

text instance in the image. We take the text representation

from the biggest bounding box found and then find the near-

est neighbor word in the corresponding dictionaries.

Scene Image OCR: A state of the art text recognition

model [20] is used to process the test set images. The de-

tected text is ranked according to the confidence score and

the closest match between the most confident text detection

and the provided vocabularies for task 1 and task 2 is used

as the answer. In task 3 the most confident text detection is

adopted as the answer directly.

Standard VQA models: We evaluate two standard

VQA models. The first one, named “Show, Ask, Attend and

Answer” [28] (SAAA), consists of a CNN-LSTM architec-

ture. On one hand, a ResNet-152 [19] is used to extract

image features with dimension 14 × 14 × 2048, while the

question is tokenized and embedded by using a multi-layer

LSTM. On top of the combination of image features and the

question embedding, multiple attention maps (glimpses) are

obtained. The result of the attention glimpses over the im-

age features and the last state of the LSTM is concatenated

and fed into two fully connected layers to obtain the distri-

bution of answer probabilities according to the classes. We

optimize the model with the Adam optimizer [31] with a

batch size of 128 for 30 epochs. The starting learning rate

is 0.001 which decays by half every 50K iterations.

The second model, named “Stacked Attention Net-

works” [56] (SAN), uses a pre-trained VGGN [48] CNN

to obtain image features with shape 14 × 14 × 512. Two

question encoding methods are proposed, one that uses an

LSTM and another that uses a CNN, both of them yielding

similar results according to the evaluated dataset. The en-

coded question either by a CNN or LSTM is used along with

the image features to compute two attention maps, which

later are used with the image features to output a classifi-

cation vector. We optimize the model with a batch size of

100 for 150 epochs. The optimizer used is RMSProp with a

starting learning rate of 0.0003 and a decay value of 0.9999.

Overall, three different experiments are proposed ac-

cording to the output classification vector. The first, is

formed by selecting the most common 1k answer strings in

the ST-VQA training set as in [4]. For the second one, we

selected the 5k most common answers so that we can see

the effect of a gradual increase of the output vector in the

two VQA models. In the third one, all the answers found

in the training set are used (19, 296) to replicate the wide

range vocabulary of scene-text images and to capture all the

answers found in the training set.

Fusing Modalities - Standard VQA Models + Scene

Text Retrieval: Using the previously described VQA mod-

els, the purpose of this baseline is to combine textual fea-

tures obtained from a scene text retrieval model with ex-

isting VQA pipelines. To achieve this, we use the model

from [13] and we employ the output tensor before the non-

maximal suppression step (NMS) is performed. The most

confident PHOC predictions above a threshold are selected

relative to a single grid cell. The selected features form a

tensor of size 14×14×609, which is concatenated with the

image features before the attention maps are calculated on

both previously described VQA baselines. Afterwards the

attended features are used to output a probability distribu-

tion over the classification vector. The models are optimized

using the same strategy described before.

4.1. Results

The results of all provided baselines according to the de-

fined tasks are summarized in Table 2. As a way to com-

pare the proposed Average Normalized Levenshtein Sim-

ilarity (ANLS) metric, we also calculate the accuracy for

each baseline. The accuracy is calculated by counting the

exact matches between the model predictions and collected

answers as is the standard practice in the VQA literature.

The last column in Table 2, upper bound, shows the max-

imum possible score that can be achieved depending on the

method evaluated. The upper bound accuracy for standard

VQA models is the percentage of questions where the cor-

rect answer is part of the models output vocabulary, while

the upper bound ANLS is calculated by taking as answer the

closest word (output class) in terms of Levenshtein distance

to the correct answer. In the case of the Scene Text Retrieval

(STR retrieval) [13] model the upper bound is calculated by

assuming that the correct answer is a single word and that

this word is retrieved by the model as the top-1 among all

the words in the provided vocabularies.

In Table 2 we appreciate that standard VQA models that

disregard textual information from the image achieve simi-

lar scores, ranging between 0.085 to 0.102 ANLS, or 6.36%

to 7.78% accuracy. One relevant point is that although in

VQA v1 [4] the SAAA [28] model is known to outperform

SAN [56], in our dataset the effect found is the opposite,

due to the fact that our dataset and task outline is different

in its nature compared to VQA v1.

Another important point is that the SAAA model in-

creases both its accuracy and ANLS score when using a

larger classification vector size, from 1k to 5k classes; how-

ever, going from 5k to 19k classes the results are worse,

suggesting that learning such a big vocabulary in a classifi-

cation manner is not feasible.

It is worth noting that the proposed ANLS metric gen-

erally tracks accuracy, which indicates broad compatibility

between the metrics. But, in addition, ANLS can deal with

border cases (i.e. correct intended responses, but slightly

wrong recognized text) where accuracy, being a hard met-

ric based on exact matches, cannot. Such border cases are

frequent due to errors at the text recognition stage. Exam-
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Task 1 Task 2 Task 3 Upper bound

Method with OCR Q V ANLS Acc. ANLS Acc. ANLS Acc. ANLS Acc.

Random ✗ ✗ ✗ 0.015 0.96 0.001 0.00 0.00 0.00 - -

STR [13] (retrieval) ✓ ✗ ✗ 0.171 13.78 0.073 5.55 - - 0.782 68.84

STR [13] (bbox) ✓ ✗ ✗ 0.130 7.32 0.118 6.89 0.128 7.21 - -

Scene Image OCR [20] ✓ ✗ ✗ 0.145 8.89 0.132 8.69 0.140 8.60 - -

SAAA [28] (1k cls) ✗ ✓ ✓ 0.085 6.36 0.085 6.36 0.085 6.36 0.571 31.96

SAAA+STR (1k cls) ✓ ✓ ✓ 0.091 6.66 0.091 6.66 0.091 6.66 0.571 31.96

SAAA [28] (5k cls) ✗ ✓ ✓ 0.087 6.66 0.087 6.66 0.087 6.66 0.740 41.03

SAAA+STR (5k cls) ✓ ✓ ✓ 0.096 7.41 0.096 7.41 0.096 7.41 0.740 41.03

SAAA [28] (19k cls) ✗ ✓ ✓ 0.084 6.13 0.084 6.13 0.084 6.13 0.862 52.31

SAAA+STR (19k cls) ✓ ✓ ✓ 0.087 6.36 0.087 6.36 0.087 6.36 0.862 52.31

QA+STR (19k cls) ✓ ✓ ✗ 0.069 4.65 0.069 4.65 0.069 4.65 0.862 52.31

SAN(LSTM) [56] (5k cls) ✗ ✓ ✓ 0.102 7.78 0.102 7.78 0.102 7.78 0.740 41.03

SAN(LSTM)+STR (5k cls) ✓ ✓ ✓ 0.136 10.34 0.136 10.34 0.136 10.34 0.740 41.03

SAN(CNN)+STR (5k cls) ✓ ✓ ✓ 0.135 10.46 0.135 10.46 0.135 10.46 0.740 41.03

Table 2. Baseline results comparison on the three tasks of ST-VQA dataset. We provide Average Normalized Levenshtein similarity

(ANLS) and Accuracy for different methods that leverage OCR, Question (Q) and Visual (V) information.
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Figure 5. Results of baseline methods in the open vocabulary task of ST-VQA by question type.

ples of such behaviour can be seen in the qualitative results

shown in Figure 6 for some of the answers (indicated in

orange color). This also explains why the “Scene Image

OCR” model is better ranked in terms of ANLS than of ac-

curacy in Table 2.

Finally, we notice that standard VQA models, disregard-

ing any textual information, perform worse or comparable

at best to the “STR (retrieval)” or “Scene Image OCR” mod-

els, despite the fact that these heuristic methods do not take

into account the question. This observation confirms the

necessity of leveraging textual information as a way to im-

prove performance in VQA models. We demonstrate this

effect by slightly improving the results of VQA models

(SAAA and SAN) by using a combination of visual fea-

tures and PHOC-based textual features (see SAAA+STR

and SAN+STR baselines descriptions for details).

For further analysis of the baseline models’ outputs and

comparison between them, we provide in Figure 5 two bar

charts with specific results on different question types. In

most of them the STR model is better than the “Scene Image

OCR” (ST-OCR) in terms of ANLS. The effect of PHOC

embedding is especially visible on the SAN model for cor-

rectly answering the question type such as “what year”,

“what company” and “which”. Also, none of the models is

capable of answering the questions regarding license plates,

“who” and “what number”. This is an inherent limitation

of models treating VQA as a pure classification problem, as

they can not deal with out of vocabulary answers. In this

regard the importance of using PHOC features lies in their

ability to capture the morphology of words rather than their

semantics as in other text embeddings [41, 45, 6]; since sev-

eral text instances and answers in the dataset may not have

any representation in a pre-trained semantic model. The

use of a morphological embedding like PHOC can provide
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Q: What brand are the ma-
chines?
A: bongard

SAN(CNN)+STR: ray

SAAA+STR: ray

Scene Image OCR: zbongard

STR (bbox): 1

Q: Where is the high court lo-
cated?
A: delhi
SAN(CNN)+STR: delhi

SAAA+STR: delhi
Scene Image OCR: high

STR (bbox): delhi

Q: What does the black label
say?

A: GemOro
SAN(CNN)+STR: st. george ct.

SAAA+STR: esplanade

Scene Image OCR: gemors

STR (bbox): genoa

Q: What’s the street name?
A: place d’armes

SAN(CNN)+STR: 10th st

SAAA+STR: ramistrasse
Scene Image OCR: d’armes

STR (bbox): dames

Q: What is the route of the bus?
A: purple route

SAN(CNN)+STR: 66

SAAA+STR: 508
Scene Image OCR: 1208

STR (bbox): purple

Q: What is the automobile spon-
sor of the event?
A: kia
SAN(CNN)+STR: kia

SAAA+STR: kia
Scene Image OCR: kin

STR (bbox): 0

Q: Which dessert is showcased?
A: donut
A: Vegan Donut

SAN(CNN)+STR: t

SAAA+STR: Donuts
Scene Image OCR: 175

STR (bbox): north

Q: What is preheat oven temper-
ature?
A: 350
SAN(CNN)+STR: 350

SAAA+STR: 0
Scene Image OCR: high

STR (bbox): receivables

Figure 6. Qualitative results for different methods on task 1 (strongly contextualised) of the ST-VQA dataset. For each image we show the

question (Q), ground-truth answer (blue), and the answers provided by different methods (green: correct answer, red: incorrect answer,

orange: incorrect answer in terms of accuracy but partially correct in terms of ANLS (0.5 ≤ ANLS < 1)).

a starting point for datasets that contain text and answers

in several languages and out of dictionary words such as

license plates, prices, directions, names, etc.

5. Conclusions and Future Work

This work introduces a new and relevant dimension to

the VQA domain. We presented a new dataset for Visual

Question Answering, the Scene Text VQA, that aims to

highlight the importance of properly exploiting the high-

level semantic information present in images in the form

of scene text to inform the VQA process. The dataset

comprises questions and answers of high variability, and

poses extremely difficult challenges for current VQA meth-

ods. We thoroughly analysed the ST-VQA dataset through

performing as series of experiments with baseline meth-

ods, which established the lower performance bounds, and

provided important insights. Although we demonstrate

that adding textual information to generic VQA models

leads to improvements, we also show that ad-hoc baselines

(e.g. OCR-based, which do exploit the contextual words)

can outperform them, reinforcing the need of different ap-

proaches. Existing VQA models usually address the prob-

lem as a classification task, but in the case of scene text

based answers the number of possible classes is intractable.

Dictionaries defined over single words are also limited. In-

stead, a generative pipeline such as the ones used in image

captioning is required to capture multiple-word answers,

and out of dictionary strings such as numbers, license plates

or codes. The proposed metric, namely Average Normal-

ized Levenshtein Similarity is better suited for generative

models compared to evaluating classification performance,

while at the same time, it has a smooth response to the text

recognition performance.
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