toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Alicia Fornes; Josep Llados; Gemma Sanchez; Dimosthenis Karatzas edit  doi
openurl 
  Title Rotation Invariant Hand-Drawn Symbol Recognition based on a Dynamic Time Warping Model Type Journal Article
  Year 2010 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 13 Issue 3 Pages 229–241  
  Keywords  
  Abstract One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the dynamic time warping (DTW) algorithm. The symbols are described by vector sequences, a variation of the DTW distance is used for computing the matching distance, and K-Nearest Neighbor is used to classify them. Our approach has been evaluated in two benchmarking scenarios consisting of hand-drawn symbols. Compared with state-of-the-art methods for symbol recognition, our method shows higher tolerance to the irregular deformations induced by hand-drawn strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IF 2009: 1,213 Approved no  
  Call Number DAG @ dag @ FLS2010a Serial 1288  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: