|
Agnes Borras and Josep Llados. 2007. Similarity-Based Object Retrieval Using Appearance and Geometric Feature Combination. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:113–120.33–39.
Abstract: This work presents a content-based image retrieval system of general purpose that deals with cluttered scenes containing a given query object. The system is flexible enough to handle with a single image of an object despite its rotation, translation and scale variations. The image content is divided in parts that are described with a combination of features based on geometrical and color properties. The idea behind the feature combination is to benefit from a fuzzy similarity computation that provides robustness and tolerance to the retrieval process. The features can be independently computed and the image parts can be easily indexed by using a table structure on every feature value. Finally a process inspired in the alignment strategies is used to check the coherence of the object parts found in a scene. Our work presents a system of easy implementation that uses an open set of features and can suit a wide variety of applications.
|
|
|
Sounak Dey, Anjan Dutta, Juan Ignacio Toledo, Suman Ghosh, Josep Llados and Umapada Pal. 2018. SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification.
Abstract: Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction.
|
|
|
Khanh Nguyen, Ali Furkan Biten, Andres Mafla, Lluis Gomez and Dimosthenis Karatzas. 2023. Show, Interpret and Tell: Entity-Aware Contextualised Image Captioning in Wikipedia. Proceedings of the 37th AAAI Conference on Artificial Intelligence.1940–1948.
Abstract: Humans exploit prior knowledge to describe images, and are able to adapt their explanation to specific contextual information given, even to the extent of inventing plausible explanations when contextual information and images do not match. In this work, we propose the novel task of captioning Wikipedia images by integrating contextual knowledge. Specifically, we produce models that jointly reason over Wikipedia articles, Wikimedia images and their associated descriptions to produce contextualized captions. The same Wikimedia image can be used to illustrate different articles, and the produced caption needs to be adapted to the specific context allowing us to explore the limits of the model to adjust captions to different contextual information. Dealing with out-of-dictionary words and Named Entities is a challenging task in this domain. To address this, we propose a pre-training objective, Masked Named Entity Modeling (MNEM), and show that this pretext task results to significantly improved models. Furthermore, we verify that a model pre-trained in Wikipedia generalizes well to News Captioning datasets. We further define two different test splits according to the difficulty of the captioning task. We offer insights on the role and the importance of each modality and highlight the limitations of our model.
|
|
|
Alicia Fornes, Xavier Otazu and Josep Llados. 2013. Show through cancellation and image enhancement by multiresolution contrast processing. 12th International Conference on Document Analysis and Recognition.200–204.
Abstract: Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.
|
|
|
Asma Bensalah, Pau Riba, Alicia Fornes and Josep Llados. 2019. Shoot less and Sketch more: An Efficient Sketch Classification via Joining Graph Neural Networks and Few-shot Learning. 13th IAPR International Workshop on Graphics Recognition.80–85.
Abstract: With the emergence of the touchpad devices and drawing tablets, a new era of sketching started afresh. However, the recognition of sketches is still a tough task due to the variability of the drawing styles. Moreover, in some application scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In addition, in many cases there is a need to generate models able to adapt to new classes. In order to cope with these limitations, we propose a method based on few-shot learning and graph neural networks for classifying sketches aiming for an efficient neural model. We test our approach with several databases of
sketches, showing promising results.
Keywords: Sketch classification; Convolutional Neural Network; Graph Neural Network; Few-shot learning
|
|
|
Sounak Dey, Anjan Dutta, Josep Llados, Alicia Fornes and Umapada Pal. 2017. Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario. 14th International Conference on Document Analysis and Recognition.31–32.
Abstract: One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
|
|
|
Josep Llados, W. Liu and Jean-Marc Ogier. 2007. Seventh IAPR International Workshop on Graphics Recognition GREC 2007.
|
|
|
David Fernandez, R.Manmatha, Josep Llados and Alicia Fornes. 2014. Sequential Word Spotting in Historical Handwritten Documents. 11th IAPR International Workshop on Document Analysis and Systems.101–105.
Abstract: In this work we present a handwritten word spotting approach that takes advantage of the a priori known order of appearance of the query words. Given an ordered sequence of query word instances, the proposed approach performs a
sequence alignment with the words in the target collection. Although the alignment is quite sparse, i.e. the number of words in the database is higher than the query set, the improvement in the overall performance is sensitively higher than isolated word spotting. As application dataset, we use a collection of handwritten marriage licenses taking advantage of the ordered
index pages of family names.
|
|
|
Ayan Banerjee, Sanket Biswas, Josep Llados and Umapada Pal. 2024. SemiDocSeg: Harnessing Semi-Supervised Learning for Document Layout Analysis. IJDAR.
Abstract: Document Layout Analysis (DLA) is the process of automatically identifying and categorizing the structural components (e.g. Text, Figure, Table, etc.) within a document to extract meaningful content and establish the page's layout structure. It is a crucial stage in document parsing, contributing to their comprehension. However, traditional DLA approaches often demand a significant volume of labeled training data, and the labor-intensive task of generating high-quality annotated training data poses a substantial challenge. In order to address this challenge, we proposed a semi-supervised setting that aims to perform learning on limited annotated categories by eliminating exhaustive and expensive mask annotations. The proposed setting is expected to be generalizable to novel categories as it learns the underlying positional information through a support set and class information through Co-Occurrence that can be generalized from annotated categories to novel categories. Here, we first extract features from the input image and support set with a shared multi-scale feature acquisition backbone. Then, the extracted feature representation is fed to the transformer encoder as a query. Later on, we utilize a semantic embedding network before the decoder to capture the underlying semantic relationships and similarities between different instances, enabling the model to make accurate predictions or classifications with only a limited amount of labeled data. Extensive experimentation on competitive benchmarks like PRIMA, DocLayNet, and Historical Japanese (HJ) demonstrate that this generalized setup obtains significant performance compared to the conventional supervised approach.
Keywords: Document layout analysis; Semi-supervised learning; Co-Occurrence matrix; Instance segmentation; Swin transformer
|
|
|
Volkmar Frinken, Markus Baumgartner, Andreas Fischer and Horst Bunke. 2012. Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting. 13th International Conference on Frontiers in Handwriting Recognition.49–54.
Abstract: State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches.
|
|