|
Pau Torras, Arnau Baro, Alicia Fornes and Lei Kang. 2022. Improving Handwritten Music Recognition through Language Model Integration. 4th International Workshop on Reading Music Systems (WoRMS2022).42–46.
Abstract: Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.
Keywords: optical music recognition; historical sources; diversity; music theory; digital humanities
|
|
|
Arnau Baro, Carles Badal, Pau Torras and Alicia Fornes. 2022. Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism. 3rd International Workshop on Reading Music Systems (WoRMS2021).55–59.
Abstract: Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Keywords: Optical Music Recognition; Digits; Image Classification
|
|
|
Giuseppe De Gregorio and 6 others. 2022. A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts. Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022).3–12. (LNCS.)
Abstract: Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Keywords: N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
|
|
|
Mohamed Ali Souibgui, Asma Bensalah, Jialuo Chen, Alicia Fornes and Michelle Waldispühl. 2022. A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted. JOCCH.
Abstract: Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.
|
|
|
Giacomo Magnifico, Beata Megyesi, Mohamed Ali Souibgui, Jialuo Chen and Alicia Fornes. 2022. Lost in Transcription of Graphic Signs in Ciphers. International Conference on Historical Cryptology (HistoCrypt 2022).153–158.
Abstract: Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.
Keywords: transcription of ciphers; hand-written text recognition of symbols; graphic signs
|
|
|
Mohamed Ali Souibgui and 6 others. 2022. DocEnTr: An End-to-End Document Image Enhancement Transformer. 26th International Conference on Pattern Recognition.1699–1705.
Abstract: Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR
Keywords: Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads
|
|
|
Pau Riba, Lutz Goldmann, Oriol Ramos Terrades, Diede Rusticus, Alicia Fornes and Josep Llados. 2022. Table detection in business document images by message passing networks. PR, 127, 108641.
Abstract: Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches.
|
|
|
Josep Llados, Daniel Lopresti and Seiichi Uchida, eds. 2021. 16th International Conference, 2021, Proceedings, Part IV. Springer Cham. (LNCS.)
Abstract: This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
|
|
|
Josep Llados, Daniel Lopresti and Seiichi Uchida, eds. 2021. 16th International Conference, 2021, Proceedings, Part III. Springer Cham. (LNCS.)
Abstract: This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
|
|
|
Josep Llados, Daniel Lopresti and Seiichi Uchida, eds. 2021. 16th International Conference, 2021, Proceedings, Part II. Springer Cham. (LNCS.)
Abstract: This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
|
|