toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Marwa Dhiaf; Mohamed Ali Souibgui; Kai Wang; Yuyang Liu; Yousri Kessentini; Alicia Fornes; Ahmed Cheikh Rouhou edit   pdf
url  openurl
  Title CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ DSW2023 Serial 3851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: