toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Pau Torras; Mohamed Ali Souibgui; Sanket Biswas; Alicia Fornes edit  url
openurl 
  Title Segmentation-Free Alignment of Arbitrary Symbol Transcripts to Images Type Conference Article
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14193 Issue Pages 83-93  
  Keywords Historical Manuscripts; Symbol Alignment  
  Abstract Developing arbitrary symbol recognition systems is a challenging endeavour. Even using content-agnostic architectures such as few-shot models, performance can be substantially improved by providing a number of well-annotated examples into training. In some contexts, transcripts of the symbols are available without any position information associated to them, which enables using line-level recognition architectures. A way of providing this position information to detection-based architectures is finding systems that can align the input symbols with the transcription. In this paper we discuss some symbol alignment techniques that are suitable for low-data scenarios and provide an insight on their perceived strengths and weaknesses. In particular, we study the usage of Connectionist Temporal Classification models, Attention-Based Sequence to Sequence models and we compare them with the results obtained on a few-shot recognition system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TSS2023 Serial 3850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: