|
Marçal Rusiñol, K. Bertet, Jean-Marc Ogier and Josep Llados. 2009. Symbol Recognition Using a Concept Lattice of Graphical Patterns. 8th IAPR International Workshop on Graphics Recognition.
Abstract: In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Dimensionality Reduction for Graph of Words Embedding. In Xiaoyi Jiang, Miquel Ferrer and Andrea Torsello, eds. 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition.22–31. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.
|
|
|
Veronica Romero, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2017. Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology. In L.A. Alexandre, J.Salvador Sanchez and Joao M. F. Rodriguez, eds. 8th Iberian Conference on Pattern Recognition and Image Analysis.287–294. (LNCS.)
Abstract: Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.
Keywords: Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model
|
|
|
Hana Jarraya, Oriol Ramos Terrades and Josep Llados. 2017. Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs. 8th Iberian Conference on Pattern Recognition and Image Analysis.
Abstract: We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.
Keywords: Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines
|
|
|
Oriol Ramos Terrades and Ernest Valveny. 2005. Local Norm Features based on ridgelets Transform.
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, Jaume Rocarias and Debora Gil. 2014. Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías.
|
|
|
Jean-Marc Ogier, Wenyin Liu and Josep Llados, eds. 2010. Graphics Recognition: Achievements, Challenges, and Evolution. Springer Link. (LNCS.)
|
|
|
Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen and Horst Bunke. 2013. A Fast Matching Algorithm for Graph-Based Handwriting Recognition. 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition. Springer Berlin Heidelberg, 194–203. (LNCS.)
Abstract: The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.
|
|
|
Albert Gordo, Alicia Fornes, Ernest Valveny and Josep Llados. 2010. A Bag of Notes Approach to Writer Identification in Old Handwritten Music Scores. 9th IAPR International Workshop on Document Analysis Systems.247–254.
Abstract: Determining the authorship of a document, namely writer identification, can be an important source of information for document categorization. Contrary to text documents, the identification of the writer of graphical documents is still a challenge. In this paper we present a robust approach for writer identification in a particular kind of graphical documents, old music scores. This approach adapts the bag of visual terms method for coping with graphic documents. The identification is performed only using the graphical music notation. For this purpose, we generate a graphic vocabulary without recognizing any music symbols, and consequently, avoiding the difficulties in the recognition of hand-drawn symbols in old and degraded documents. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving very high identification rates.
|
|
|
Albert Gordo, Jaume Gibert, Ernest Valveny and Marçal Rusiñol. 2010. A Kernel-based Approach to Document Retrieval. 9th IAPR International Workshop on Document Analysis Systems.377–384.
Abstract: In this paper we tackle the problem of document image retrieval by combining a similarity measure between documents and the probability that a given document belongs to a certain class. The membership probability to a specific class is computed using Support Vector Machines in conjunction with similarity measure based kernel applied to structural document representations. In the presented experiments, we use different document representations, both visual and structural, and we apply them to a database of historical documents. We show how our method based on similarity kernels outperforms the usual distance-based retrieval.
|
|