|
Alicia Fornes, Anjan Dutta, Albert Gordo and Josep Llados. 2012. CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal. IJDAR, 15(3), 243–251.
Abstract: 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
Keywords: Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths
|
|
|
Partha Pratim Roy, Umapada Pal, Josep Llados and Mathieu Nicolas Delalandre. 2012. Multi-oriented touching text character segmentation in graphical documents using dynamic programming. PR, 45(5), 1972–1983.
Abstract: 2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes.
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2012. Text line extraction in graphical documents using background and foreground. IJDAR, 15(3), 227–241.
Abstract: 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Text/graphic separation using a sparse representation with multi-learned dictionaries. 21st International Conference on Pattern Recognition.
Abstract: In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.
Keywords: Graphics Recognition; Layout Analysis; Document Understandin
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Noise suppression over bi-level graphical documents using a sparse representation. Colloque International Francophone sur l'Écrit et le Document.
|
|
|
Jaume Gibert, Ernest Valveny, Horst Bunke and Alicia Fornes. 2012. On the Correlation of Graph Edit Distance and L1 Distance in the Attribute Statistics Embedding Space. Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop. Springer-Berlag, Berlin, 135–143. (LNCS.)
Abstract: Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In particular, it is usually desired that distances between pairs of graphs in the graph domain closely resemble those between their corresponding vectorial representations. In this work, we analyse relations between the edit distance in the graph domain and the L1 distance of the attribute statistics based embedding, for which good classification performance has been reported on various datasets. We show that there is actually a high correlation between the two kinds of distances provided that the corresponding parameter values that account for balancing the weight between node and edge based features are properly selected.
|
|
|
David Fernandez, Josep Llados, Alicia Fornes and R.Manmatha. 2012. On Influence of Line Segmentation in Efficient Word Segmentation in Old Manuscripts. 13th International Conference on Frontiers in Handwriting Recognition.763–768.
Abstract: he objective of this work is to show the importance of a good line segmentation to obtain better results in the segmentation of words of historical documents. We have used the approach developed by Manmatha and Rothfeder [1] to segment words in old handwritten documents. In their work the lines of the documents are extracted using projections. In this work, we have developed an approach to segment lines more efficiently. The new line segmentation algorithm tackles with skewed, touching and noisy lines, so it is significantly improves word segmentation. Experiments using Spanish documents from the Marriages Database of the Barcelona Cathedral show that this approach reduces the error rate by more than 20%
Keywords: document image processing;handwritten character recognition;history;image segmentation;Spanish document;historical document;line segmentation;old handwritten document;old manuscript;word segmentation;Bifurcation;Dynamic programming;Handwriting recognition;Image segmentation;Measurement;Noise;Skeleton;Segmentation;document analysis;document and text processing;handwriting analysis;heuristics;path-finding
|
|
|
Jaume Gibert. 2012. Vector Space Embedding of Graphs via Statistics of Labelling Information. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.
Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.
In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
|
|
|
Jaume Gibert. 2009. Learning structural representations and graph matching paradigms in the context of object recognition. (Master's thesis, .)
|
|
|
Joan Mas, Gemma Sanchez and Josep Llados. 2010. SSP: Sketching slide Presentations, a Syntactic Approach. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 118–129. (LNCS.)
Abstract: The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.
|
|