|
Veronica Romero, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2017. Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology. In L.A. Alexandre, J.Salvador Sanchez and Joao M. F. Rodriguez, eds. 8th Iberian Conference on Pattern Recognition and Image Analysis.287–294. (LNCS.)
Abstract: Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.
Keywords: Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model
|
|
|
Manuel Carbonell, Joan Mas, Mauricio Villegas, Alicia Fornes and Josep Llados. 2019. End-to-End Handwritten Text Detection and Transcription in Full Pages. 2nd International Workshop on Machine Learning.29–34.
Abstract: When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately.
Keywords: Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning
|
|
|
Marçal Rusiñol and Josep Llados. 2014. Boosting the Handwritten Word Spotting Experience by Including the User in the Loop. PR, 47(3), 1063–1072.
Abstract: In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.
Keywords: Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling
|
|
|
Alicia Fornes and 11 others. 2022. The RPM3D Project: 3D Kinematics for Remote Patient Monitoring. Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022.217–226. (LNCS.)
Abstract: This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.
Keywords: Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics
|
|
|
Pau Riba, Josep Llados and Alicia Fornes. 2020. Hierarchical graphs for coarse-to-fine error tolerant matching. PRL, 134, 116–124.
Abstract: During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).
Keywords: Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2015. Efficient segmentation-free keyword spotting in historical document collections. PR, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|
|
Pau Torras, Mohamed Ali Souibgui, Sanket Biswas and Alicia Fornes. 2023. Segmentation-Free Alignment of Arbitrary Symbol Transcripts to Images. Document Analysis and Recognition – ICDAR 2023 Workshops.83–93. (LNCS.)
Abstract: Developing arbitrary symbol recognition systems is a challenging endeavour. Even using content-agnostic architectures such as few-shot models, performance can be substantially improved by providing a number of well-annotated examples into training. In some contexts, transcripts of the symbols are available without any position information associated to them, which enables using line-level recognition architectures. A way of providing this position information to detection-based architectures is finding systems that can align the input symbols with the transcription. In this paper we discuss some symbol alignment techniques that are suitable for low-data scenarios and provide an insight on their perceived strengths and weaknesses. In particular, we study the usage of Connectionist Temporal Classification models, Attention-Based Sequence to Sequence models and we compare them with the results obtained on a few-shot recognition system.
Keywords: Historical Manuscripts; Symbol Alignment
|
|
|
Francesc Net, Marc Folia, Pep Casals and Lluis Gomez. 2023. Transductive Learning for Near-Duplicate Image Detection in Scanned Photo Collections. 17th International Conference on Document Analysis and Recognition.3–17. (LNCS.)
Abstract: This paper presents a comparative study of near-duplicate image detection techniques in a real-world use case scenario, where a document management company is commissioned to manually annotate a collection of scanned photographs. Detecting duplicate and near-duplicate photographs can reduce the time spent on manual annotation by archivists. This real use case differs from laboratory settings as the deployment dataset is available in advance, allowing the use of transductive learning. We propose a transductive learning approach that leverages state-of-the-art deep learning architectures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). Our approach involves pre-training a deep neural network on a large dataset and then fine-tuning the network on the unlabeled target collection with self-supervised learning. The results show that the proposed approach outperforms the baseline methods in the task of near-duplicate image detection in the UKBench and an in-house private dataset.
Keywords: Image deduplication; Near-duplicate images detection; Transductive Learning; Photographic Archives; Deep Learning
|
|
|
Francesc Tous, Agnes Borras, Robert Benavente, Ramon Baldrich, Maria Vanrell and Josep Llados. 2002. Textual Descriptors for browsing people by visual appearence. 5è. Congrés Català d’Intel·ligència Artificial CCIA.
Abstract: This paper presents a first approach to build colour and structural descriptors for information retrieval on a people database. Queries are formulated in terms of their appearance that allows to seek people wearing specific clothes of a given colour name or texture. Descriptors are automatically computed by following three essential steps. A colour naming labelling from pixel properties. A region seg- mentation step based on colour properties of pixels combined with edge information. And a high level step that models the region arrangements in order to build clothes structure. Results are tested on large set of images from real scenes taken at the entrance desk of a building.
Keywords: Image retrieval, textual descriptors, colour naming, colour normalization, graph matching.
|
|
|
Lluis Gomez, Andres Mafla, Marçal Rusiñol and Dimosthenis Karatzas. 2018. Single Shot Scene Text Retrieval. 15th European Conference on Computer Vision.728–744. (LNCS.)
Abstract: Textual information found in scene images provides high level semantic information about the image and its context and it can be leveraged for better scene understanding. In this paper we address the problem of scene text retrieval: given a text query, the system must return all images containing the queried text. The novelty of the proposed model consists in the usage of a single shot CNN architecture that predicts at the same time bounding boxes and a compact text representation of the words in them. In this way, the text based image retrieval task can be casted as a simple nearest neighbor search of the query text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.
Keywords: Image retrieval; Scene text; Word spotting; Convolutional Neural Networks; Region Proposals Networks; PHOC
|
|