|
Youssef El Rhabi, Simon Loic and Brun Luc. 2015. Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel. 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015.
Abstract: Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.
Keywords: Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration
|
|
|
Nuria Cirera, Alicia Fornes and Josep Llados. 2015. Hidden Markov model topology optimization for handwriting recognition. 13th International Conference on Document Analysis and Recognition ICDAR2015.626–630.
Abstract: In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task.
|
|
|
Juan Ignacio Toledo, Jordi Cucurull, Jordi Puiggali, Alicia Fornes and Josep Llados. 2015. Document Analysis Techniques for Automatic Electoral Document Processing: A Survey. E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015.139–141. (LNCS.)
Abstract: In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents.
Keywords: Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally
|
|
|
Pau Riba, Josep Llados and Alicia Fornes. 2015. Handwritten Word Spotting by Inexact Matching of Grapheme Graphs. 13th International Conference on Document Analysis and Recognition ICDAR2015.781–785.
Abstract: This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections.
|
|
|
J. Chazalon, Marçal Rusiñol and Jean-Marc Ogier. 2015. Improving Document Matching Performance by Local Descriptor Filtering. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1216–1220.
Abstract: In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
|
|
|
Jean-Christophe Burie and 9 others. 2015. ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc). 13th International Conference on Document Analysis and Recognition ICDAR2015.1161–1165.
Abstract: Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2015. Towards Query-by-Speech Handwritten Keyword Spotting. 13th International Conference on Document Analysis and Recognition ICDAR2015.501–505.
Abstract: In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset.
|
|
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Josep Llados, R.Jain and D.Doermann. 2015. Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections. 13th International Conference on Document Analysis and Recognition ICDAR2015.481–485.
|
|
|
Marçal Rusiñol, J. Chazalon, Jean-Marc Ogier and Josep Llados. 2015. A Comparative Study of Local Detectors and Descriptors for Mobile Document Classification. 13th International Conference on Document Analysis and Recognition ICDAR2015.596–600.
Abstract: In this paper we conduct a comparative study of local key-point detectors and local descriptors for the specific task of mobile document classification. A classification architecture based on direct matching of local descriptors is used as baseline for the comparative study. A set of four different key-point
detectors and four different local descriptors are tested in all the possible combinations. The experiments are conducted in a database consisting of 30 model documents acquired on 6 different backgrounds, totaling more than 36.000 test images.
|
|
|
J. Chazalon, Marçal Rusiñol, Jean-Marc Ogier and Josep Llados. 2015. A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation. 13th International Conference on Document Analysis and Recognition ICDAR2015.621–625.
Abstract: This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
|
|