|
Oriol Vicente, Alicia Fornes and Ramon Valdes. 2017. La Xarxa d Humanitats Digitals de la UABCie: una estructura inteligente para la investigación y la transferencia en Humanidades. 3rd Congreso Internacional de Humanidades Digitales Hispánicas. Sociedad Internacional.281–383.
|
|
|
Alicia Fornes, Volkmar Frinken, Andreas Fischer, Jon Almazan, G. Jackson and Horst Bunke. 2011. A Keyword Spotting Approach Using Blurred Shape Model-Based Descriptors. Proceedings of the 2011 Workshop on Historical Document Imaging and Processing. ACM, 83–90.
Abstract: The automatic processing of handwritten historical documents is considered a hard problem in pattern recognition. In addition to the challenges given by modern handwritten data, a lack of training data as well as effects caused by the degradation of documents can be observed. In this scenario, keyword spotting arises to be a viable solution to make documents amenable for searching and browsing. For this task we propose the adaptation of shape descriptors used in symbol recognition. By treating each word image as a shape, it can be represented using the Blurred Shape Model and the De-formable Blurred Shape Model. Experiments on the George Washington database demonstrate that this approach is able to outperform the commonly used Dynamic Time Warping approach.
|
|
|
Andreas Fischer, Volkmar Frinken, Alicia Fornes and Horst Bunke. 2011. Transcription Alignment of Latin Manuscripts Using Hidden Markov Models. Proceedings of the 2011 Workshop on Historical Document Imaging and Processing. ACM, 29–36.
Abstract: Transcriptions of historical documents are a valuable source for extracting labeled handwriting images that can be used for training recognition systems. In this paper, we introduce the Saint Gall database that includes images as well as the transcription of a Latin manuscript from the 9th century written in Carolingian script. Although the available transcription is of high quality for a human reader, the spelling of the words is not accurate when compared with the handwriting image. Hence, the transcription poses several challenges for alignment regarding, e.g., line breaks, abbreviations, and capitalization. We propose an alignment system based on character Hidden Markov Models that can cope with these challenges and efficiently aligns complete document pages. On the Saint Gall database, we demonstrate that a considerable alignment accuracy can be achieved, even with weakly trained character models.
|
|
|
David Fernandez, Simone Marinai, Josep Llados and Alicia Fornes. 2013. Contextual Word Spotting in Historical Manuscripts using Markov Logic Networks. 2nd International Workshop on Historical Document Imaging and Processing.36–43.
Abstract: Natural languages can often be modelled by suitable grammars whose knowledge can improve the word spotting results. The implicit contextual information is even more useful when dealing with information that is intrinsically described as one collection of records. In this paper, we present one approach to word spotting which uses the contextual information of records to improve the results. The method relies on Markov Logic Networks to probabilistically model the relational organization of handwritten records. The performance has been evaluated on the Barcelona Marriages Dataset that contains structured handwritten records that summarize marriage information.
|
|
|
Volkmar Frinken, Andreas Fischer and Carlos David Martinez Hinarejos. 2013. Handwriting Recognition in Historical Documents using Very Large Vocabularies. 2nd International Workshop on Historical Document Imaging and Processing.67–72.
Abstract: Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.
|
|
|
Veronica Romero, Emilio Granell, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2019. Information Extraction in Handwritten Marriage Licenses Books. 5th International Workshop on Historical Document Imaging and Processing.66–71.
Abstract: Handwritten marriage licenses books are characterized by a simple structure of the text in the records with an evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. Previous works have shown that the use of category-based language models and a Grammatical Inference technique known as MGGI can improve the accuracy of these
tasks. However, the application of the MGGI algorithm requires an a priori knowledge to label the words of the training strings, that is not always easy to obtain. In this paper we study how to automatically obtain the information required by the MGGI algorithm using a technique based on Confusion Networks. Using the resulting language model, full handwritten text recognition and information extraction experiments have been carried out with results supporting the proposed approach.
|
|
|
Mohamed Ali Souibgui, Pau Torras, Jialuo Chen and Alicia Fornes. 2023. An Evaluation of Handwritten Text Recognition Methods for Historical Ciphered Manuscripts. 7th International Workshop on Historical Document Imaging and Processing.7–12.
Abstract: This paper investigates the effectiveness of different deep learning HTR families, including LSTM, Seq2Seq, and transformer-based approaches with self-supervised pretraining, in recognizing ciphered manuscripts from different historical periods and cultures. The goal is to identify the most suitable method or training techniques for recognizing ciphered manuscripts and to provide insights into the challenges and opportunities in this field of research. We evaluate the performance of these models on several datasets of ciphered manuscripts and discuss their results. This study contributes to the development of more accurate and efficient methods for recognizing historical manuscripts for the preservation and dissemination of our cultural heritage.
|
|
|
Jialuo Chen, M.A.Souibgui, Alicia Fornes and Beata Megyesi. 2020. A Web-based Interactive Transcription Tool for Encrypted Manuscripts. 3rd International Conference on Historical Cryptology.52–59.
Abstract: Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
|
|
|
Jialuo Chen, Mohamed Ali Souibgui, Alicia Fornes and Beata Megyesi. 2021. Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images. 4th International Conference on Historical Cryptology.34–37.
Abstract: Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.
|
|
|
Giacomo Magnifico, Beata Megyesi, Mohamed Ali Souibgui, Jialuo Chen and Alicia Fornes. 2022. Lost in Transcription of Graphic Signs in Ciphers. International Conference on Historical Cryptology (HistoCrypt 2022).153–158.
Abstract: Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.
Keywords: transcription of ciphers; hand-written text recognition of symbols; graphic signs
|
|