|
Marc Sunset Perez, Marc Comino Trinidad, Dimosthenis Karatzas, Antonio Chica Calaf and Pere Pau Vazquez Alcocer. 2016. Development of general‐purpose projection‐based augmented reality systems.
Abstract: Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups
|
|
|
Maria Vanrell, Felipe Lumbreras, A. Pujol, Ramon Baldrich, Josep Llados and Juan J. Villanueva. 2001. Colour Normalisation Based on Background Information..
|
|
|
Marwa Dhiaf and 6 others. 2023. CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition.
Abstract: Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.
|
|
|
Masakazu Iwamura, Naoyuki Morimoto, Keishi Tainaka, Dena Bazazian, Lluis Gomez and Dimosthenis Karatzas. 2017. ICDAR2017 Robust Reading Challenge on Omnidirectional Video. 14th International Conference on Document Analysis and Recognition.
Abstract: Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community.
|
|
|
Mathieu Nicolas Delalandre, Ernest Valveny and Josep Llados. 2008. Performance Evaluation of Symbol Recognition and Spotting Systems: An Overview.
|
|
|
Mathieu Nicolas Delalandre, Ernest Valveny and Josep Llados. 2008. Performance Evaluation of Symbol Recognition and Spotting Systems. Proceedings of the 8th International Workshop on Document Analysis Systems,.497–505.
|
|
|
Mathieu Nicolas Delalandre, Ernest Valveny, Tony Pridmore and Dimosthenis Karatzas. 2010. Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems. IJDAR, 13(3), 187–207.
Abstract: This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.
|
|
|
Mathieu Nicolas Delalandre, Jean-Marc Ogier and Josep Llados. 2007. A Fast System for the Retrieval of Ornamental Letter Image. Seventh IAPR International Workshop on Graphics Recognition.51–54.
|
|
|
Mathieu Nicolas Delalandre, Jean-Marc Ogier and Josep Llados. 2008. A Fast Cbir System of Old Ornamental Letter. In W. Liu, J.L., J.M. Ogier, ed. Graphics Reognition: Recent Advances and New Opportunities.135–144. (LNCS.)
|
|
|
Mathieu Nicolas Delalandre, Jean-Yves Ramel, Ernest Valveny and Muhammad Muzzamil Luqman. 2009. A Performance Characterization Algorithm for Symbol Localization. 8th IAPR International Workshop on Graphics Recognition. Springer, 3–11.
Abstract: In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols).
|
|