|
Leonardo Galteri and 7 others. 2017. Reading Text in the Wild from Compressed Images. 1st International workshop on Egocentric Perception, Interaction and Computing.
Abstract: Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates.
|
|
|
Liu Wenyin, Josep Llados and Jean-Marc Ogier. 2008. Graphics Recognition. Recent Advances and New Opportunities.. (LNCS.)
|
|
|
Lluis Gomez. 2012. Perceptual Organization for Text Extraction in Natural Scenes. (Master's thesis, .)
|
|
|
Lluis Gomez. 2016. Exploiting Similarity Hierarchies for Multi-script Scene Text Understanding. (Ph.D. thesis, .)
Abstract: This thesis addresses the problem of automatic scene text understanding in unconstrained conditions. In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and script identification in natural scenes.
For this we have developed a set of generic methods that build on top of the basic observation that text has always certain key visual and structural characteristics that are independent of the language or script in which it is written. Text instances in any
language or script are always formed as groups of similar atomic parts, being them either individual characters, small stroke parts, or even whole words in the case of cursive text. This holistic (sumof-parts) and recursive perspective has lead us to explore different variants of the “segmentation and grouping” paradigm of computer vision.
Scene text detection methodologies are usually based in classification of individual regions or patches, using a priory knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organization through which
text emerges as a perceptually significant group of atomic objects.
In this thesis, we argue that the text detection problem must be posed as the detection of meaningful groups of regions. We address the problem of text detection in natural scenes from a hierarchical perspective, making explicit use of the recursive nature of text, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypothese with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Within this generic framework, we design a text-specific object proposals algorithm that, contrary to existing generic object proposals methods, aims directly to the detection of text regions groupings. For this, we abandon the rigid definition of “what is text” of traditional specialized text detectors, and move towards more fuzzy perspective of grouping-based object proposals methods.
Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region groupings plays also a central role. By leveraging the structural arrangement of text group components between consecutive frames we can improve
the overall tracking performance of the system.
Finally, since our generic detection framework is inherently designed for multi-language environments, we focus on the problem of script identification in order to build a multi-language end-toend reading system. Facing this problem with state of the art CNN classifiers is not straightforward, as they fail to address a key
characteristic of scene text instances: their extremely variable aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of the image that are characteristic of its class. We describe a novel method based on the use of ensembles of conjoined networks to jointly learn discriminative stroke-parts representations and their relative importance in a patch-based classification scheme.
|
|
|
Lluis Gomez and 6 others. 2021. Multimodal grid features and cell pointers for scene text visual question answering. PRL, 150, 242–249.
Abstract: This paper presents a new model for the task of scene text visual question answering. In this task questions about a given image can only be answered by reading and understanding scene text. Current state of the art models for this task make use of a dual attention mechanism in which one attention module attends to visual features while the other attends to textual features. A possible issue with this is that it makes difficult for the model to reason jointly about both modalities. To fix this problem we propose a new model that is based on an single attention mechanism that attends to multi-modal features conditioned to the question. The output weights of this attention module over a grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text to the given question. Our experiments demonstrate competitive performance in two standard datasets with a model that is faster than previous methods at inference time. Furthermore, we also provide a novel analysis of the ST-VQA dataset based on a human performance study. Supplementary material, code, and data is made available through this link.
|
|
|
Lluis Gomez, Andres Mafla, Marçal Rusiñol and Dimosthenis Karatzas. 2018. Single Shot Scene Text Retrieval. 15th European Conference on Computer Vision.728–744. (LNCS.)
Abstract: Textual information found in scene images provides high level semantic information about the image and its context and it can be leveraged for better scene understanding. In this paper we address the problem of scene text retrieval: given a text query, the system must return all images containing the queried text. The novelty of the proposed model consists in the usage of a single shot CNN architecture that predicts at the same time bounding boxes and a compact text representation of the words in them. In this way, the text based image retrieval task can be casted as a simple nearest neighbor search of the query text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.
Keywords: Image retrieval; Scene text; Word spotting; Convolutional Neural Networks; Region Proposals Networks; PHOC
|
|
|
Lluis Gomez, Anguelos Nicolaou and Dimosthenis Karatzas. 2017. Improving patch‐based scene text script identification with ensembles of conjoined networks. PR, 67, 85–96.
|
|
|
Lluis Gomez, Anguelos Nicolaou, Marçal Rusiñol and Dimosthenis Karatzas. 2020. 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding. In K. Alahari and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|
|
Lluis Gomez, Dena Bazazian and Dimosthenis Karatzas. 2020. Historical review of scene text detection research. In K. Alahari and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2013. Multi-script Text Extraction from Natural Scenes. 12th International Conference on Document Analysis and Recognition.467–471.
Abstract: Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.
|
|