|
Jean-Christophe Burie and 9 others. 2015. ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc). 13th International Conference on Document Analysis and Recognition ICDAR2015.1161–1165.
Abstract: Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
|
|
|
Jean-Marc Ogier, Wenyin Liu and Josep Llados, eds. 2010. Graphics Recognition: Achievements, Challenges, and Evolution. Springer Link. (LNCS.)
|
|
|
Jialuo Chen, M.A.Souibgui, Alicia Fornes and Beata Megyesi. 2020. A Web-based Interactive Transcription Tool for Encrypted Manuscripts. 3rd International Conference on Historical Cryptology.52–59.
Abstract: Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
|
|
|
Jialuo Chen, Mohamed Ali Souibgui, Alicia Fornes and Beata Megyesi. 2021. Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images. 4th International Conference on Historical Cryptology.34–37.
Abstract: Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.
|
|
|
Jialuo Chen, Pau Riba, Alicia Fornes, Juan Mas, Josep Llados and Joana Maria Pujadas-Mora. 2018. Word-Hunter: A Gamesourcing Experience to Validate the Transcription of Historical Manuscripts. 16th International Conference on Frontiers in Handwriting Recognition.528–533.
Abstract: Nowadays, there are still many handwritten historical documents in archives waiting to be transcribed and indexed. Since manual transcription is tedious and time consuming, the automatic transcription seems the path to follow. However, the performance of current handwriting recognition techniques is not perfect, so a manual validation is mandatory. Crowdsourcing is a good strategy for manual validation, however it is a tedious task. In this paper we analyze experiences based in gamification
in order to propose and design a gamesourcing framework that increases the interest of users. Then, we describe and analyze our experience when validating the automatic transcription using the gamesourcing application. Moreover, thanks to the combination of clustering and handwriting recognition techniques, we can speed up the validation while maintaining the performance.
Keywords: Crowdsourcing; Gamification; Handwritten documents; Performance evaluation
|
|
|
Joan M. Nuñez, Jorge Bernal, Miquel Ferrer and Fernando Vilariño. 2014. Impact of Keypoint Detection on Graph-based Characterization of Blood Vessels in Colonoscopy Videos. CARE workshop.
Abstract: We explore the potential of the use of blood vessels as anatomical landmarks for developing image registration methods in colonoscopy images. An unequivocal representation of blood vessels could be used to guide follow-up methods to track lesions over different interventions. We propose a graph-based representation to characterize network structures, such as blood vessels, based on the use of intersections and endpoints. We present a study consisting of the assessment of the minimal performance a keypoint detector should achieve so that the structure can still be recognized. Experimental results prove that, even by achieving a loss of 35% of the keypoints, the descriptive power of the associated graphs to the vessel pattern is still high enough to recognize blood vessels.
Keywords: Colonoscopy; Graph Matching; Biometrics; Vessel; Intersection
|
|
|
Joan Mas. 2005. Syntactic approaches to recognize bi-dimensional shapes in graphics recognition. Application to sketching interfaces.
|
|
|
Joan Mas. 2010. A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance.
|
|
|
Joan Mas, Alicia Fornes and Josep Llados. 2016. An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer. 12th IAPR Workshop on Document Analysis Systems.54–59.
Abstract: This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.
|
|
|
Joan Mas, B. Lamiroy, Gemma Sanchez and Josep Llados. 2006. Automatic Adjacency Grammar Generation from User Drawn Sketches.
|
|