|
Albert Gordo, Alicia Fornes and Ernest Valveny. 2013. Writer identification in handwritten musical scores with bags of notes. PR, 46(5), 1337–1345.
Abstract: Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset.
|
|
|
Albert Gordo, Alicia Fornes, Ernest Valveny and Josep Llados. 2010. A Bag of Notes Approach to Writer Identification in Old Handwritten Music Scores. 9th IAPR International Workshop on Document Analysis Systems.247–254.
Abstract: Determining the authorship of a document, namely writer identification, can be an important source of information for document categorization. Contrary to text documents, the identification of the writer of graphical documents is still a challenge. In this paper we present a robust approach for writer identification in a particular kind of graphical documents, old music scores. This approach adapts the bag of visual terms method for coping with graphic documents. The identification is performed only using the graphical music notation. For this purpose, we generate a graphic vocabulary without recognizing any music symbols, and consequently, avoiding the difficulties in the recognition of hand-drawn symbols in old and degraded documents. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving very high identification rates.
|
|
|
Albert Gordo and Ernest Valveny. 2009. A rotation invariant page layout descriptor for document classification and retrieval. 10th International Conference on Document Analysis and Recognition.481–485.
Abstract: Document classification usually requires of structural features such as the physical layout to obtain good accuracy rates on complex documents. This paper introduces a descriptor of the layout and a distance measure based on the cyclic dynamic time warping which can be computed in O(n2). This descriptor is translation invariant and can be easily modified to be scale and rotation invariant. Experiments with this descriptor and its rotation invariant modification are performed on the Girona archives database and compared against another common layout distance, the minimum weight edge cover. The experiments show that these methods outperform the MWEC both in accuracy and speed, particularly on rotated documents.
|
|
|
Albert Gordo and Ernest Valveny. 2009. The diagonal split: A pre-segmentation step for page layout analysis & classification. 4th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 290–297. (LNCS.)
Abstract: Document classification is an important task in all the processes related to document storage and retrieval. In the case of complex documents, structural features are needed to achieve a correct classification. Unfortunately, physical layout analysis is error prone. In this paper we present a pre-segmentation step based on a divide & conquer strategy that can be used to improve the page segmentation results, independently of the segmentation algorithm used. This pre-segmentation step is evaluated in classification and retrieval using the selective CRLA algorithm for layout segmentation together with a clustering based on the voronoi area diagram, and tested on two different databases, MARG and Girona Archives.
|
|
|
Albert Gordo and Florent Perronnin. 2010. A Bag-of-Pages Approach to Unordered Multi-Page Document Classification. 20th International Conference on Pattern Recognition.1920–1923.
Abstract: We consider the problem of classifying documents containing multiple unordered pages. For this purpose, we propose a novel bag-of-pages document representation. To represent a document, one assigns every page to a prototype in a codebook of pages. This leads to a histogram representation which can then be fed to any discriminative classifier. We also consider several refinements over this initial approach. We show on two challenging datasets that the proposed approach significantly outperforms a baseline system.
|
|
|
Albert Gordo and Florent Perronnin. 2011. Asymmetric Distances for Binary Embeddings. IEEE Conference on Computer Vision and Pattern Recognition.729–736.
Abstract: In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH) and Semi-Supervised Hashing (SSH). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques. We also propose a novel simple binary embedding technique – PCA Embedding (PCAE) – which is shown to yield competitive results with respect to more complex algorithms such as SH and SSH.
|
|
|
Albert Gordo, Florent Perronnin and Ernest Valveny. 2013. Large-scale document image retrieval and classification with runlength histograms and binary embeddings. PR, 46(7), 1898–1905.
Abstract: We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
Keywords: visual document descriptor; compression; large-scale; retrieval; classification
|
|
|
Albert Gordo, Florent Perronnin and Ernest Valveny. 2012. Document classification using multiple views. 10th IAPR International Workshop on Document Analysis Systems. IEEE Computer Society Washington, 33–37.
Abstract: The combination of multiple features or views when representing documents or other kinds of objects usually leads to improved results in classification (and retrieval) tasks. Most systems assume that those views will be available both at training and test time. However, some views may be too `expensive' to be available at test time. In this paper, we consider the use of Canonical Correlation Analysis to leverage `expensive' views that are available only at training time. Experimental results show that this information may significantly improve the results in a classification task.
|
|
|
Albert Gordo, Florent Perronnin, Yunchao Gong and Svetlana Lazebnik. 2014. Asymmetric Distances for Binary Embeddings. TPAMI, 36(1), 33–47.
Abstract: In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH), PCA Embedding (PCAE), PCA Embedding with random rotations (PCAE-RR), and PCA Embedding with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.
|
|
|
Albert Gordo, Jaume Gibert, Ernest Valveny and Marçal Rusiñol. 2010. A Kernel-based Approach to Document Retrieval. 9th IAPR International Workshop on Document Analysis Systems.377–384.
Abstract: In this paper we tackle the problem of document image retrieval by combining a similarity measure between documents and the probability that a given document belongs to a certain class. The membership probability to a specific class is computed using Support Vector Machines in conjunction with similarity measure based kernel applied to structural document representations. In the presented experiments, we use different document representations, both visual and structural, and we apply them to a database of historical documents. We show how our method based on similarity kernels outperforms the usual distance-based retrieval.
|
|