|
Mathieu Nicolas Delalandre, Ernest Valveny, Tony Pridmore, & Dimosthenis Karatzas. (2010). Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems. IJDAR - International Journal on Document Analysis and Recognition, 13(3), 187–207.
Abstract: This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results.
|
|
|
Jaume Gibert, Ernest Valveny, & Horst Bunke. (2012). Graph Embedding in Vector Spaces by Node Attribute Statistics. PR - Pattern Recognition, 45(9), 3072–3083.
Abstract: Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
Keywords: Structural pattern recognition; Graph embedding; Data clustering; Graph classification
|
|
|
Josep Llados, & Gemma Sanchez. (2004). Graph Matching vs. Graph Parsing in Graphics Recognition: A Combined Approach. IJPRAI - International Journal of Pattern Recognition and Artificial Intelligence, 455–473.
|
|
|
Josep Llados, & Enric Marti. (1999). Graph-edit algorithms for hand-drawn graphical document recognition and their automatic introduction. Machine Graphics & Vision journal, special issue on Graph transformation, .
|
|
|
Pau Riba, Josep Llados, & Alicia Fornes. (2020). Hierarchical graphs for coarse-to-fine error tolerant matching. PRL - Pattern Recognition Letters, 134, 116–124.
Abstract: During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).
Keywords: Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval
|
|