|
Fahad Shahbaz Khan, Joost Van de Weijer, Muhammad Anwer Rao, Andrew Bagdanov, Michael Felsberg and Jorma. 2018. Scale coding bag of deep features for human attribute and action recognition. MVAP, 29(1), 55–71.
Abstract: Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.
Keywords: Action recognition; Attribute recognition; Bag of deep features
|
|
|
Joan Serrat, Felipe Lumbreras and Idoia Ruiz. 2018. Learning to measure for preshipment garment sizing. MEASURE, 130, 327–339.
Abstract: Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively.
Keywords: Apparel; Computer vision; Structured prediction; Regression
|
|
|
Naveen Onkarappa and Angel Sappa. 2015. Synthetic sequences and ground-truth flow field generation for algorithm validation. MTAP, 74(9), 3121–3135.
Abstract: Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.
Keywords: Ground-truth optical flow; Synthetic sequence; Algorithm validation
|
|
|
Marçal Rusiñol, J. Chazalon and Katerine Diaz. 2018. Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness. MTAP, 77(11), 13773–13798.
Abstract: This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.
Keywords: Augmented reality; Document image matching; Educational applications
|
|
|
Henry Velesaca, Gisel Bastidas-Guacho, Mohammad Rouhani and Angel Sappa. 2024. Multimodal image registration techniques: a comprehensive survey. MTAP.
Abstract: This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.
|
|
|
Monica Piñol, Angel Sappa and Ricardo Toledo. 2015. Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy. NEUCOM, 150(A), 106–115.
Abstract: This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach.
Keywords: Reinforcement learning; Q-learning; Bag of features; Descriptors
|
|
|
J. Pladellorens, M.J. Yzuel, J. Castell and Joan Serrat. 1993. Calculo automatico del volumen del ventriculo izquierdo. Comparacion con expertos..
|
|
|
Felipe Lumbreras and Joan Serrat. 1996. Wavelet filtering for the segmentation of marble images. Optical Engineering, 35(10).
|
|
|
Daniel Ponsa, Robert Benavente, Felipe Lumbreras, Judit Martinez and Xavier Roca. 2003. Quality control of safety belts by machine vision inspection for real-time production. Optical Engineering (IF: 0.877), 42(4), 1114–1120.
|
|
|
Daniel Ponsa and Antonio Lopez. 2009. Variance reduction techniques in particle-based visual contour Tracking. PR, 42(11), 2372–2391.
Abstract: This paper presents a comparative study of three different strategies to improve the performance of particle filters, in the context of visual contour tracking: the unscented particle filter, the Rao-Blackwellized particle filter, and the partitioned sampling technique. The tracking problem analyzed is the joint estimation of the global and local transformation of the outline of a given target, represented following the active shape model approach. The main contributions of the paper are the novel adaptations of the considered techniques on this generic problem, and the quantitative assessment of their performance in extensive experimental work done.
Keywords: Contour tracking; Active shape models; Kalman filter; Particle filter; Importance sampling; Unscented particle filter; Rao-Blackwellization; Partitioned sampling
|
|