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1. Introduction

Visual contour tracking is an area of research that has received
much attention by the computer vision community for many years.
One essential reason for this to happen is that, in many application
domains, the contour of an object is a very informative cue about
its state or configuration. Proof of that is the application of con-
tour tracking in areas like visual surveillance [1], traffic monitoring
[2], medical diagnosis [3,4] and human-machine interaction [5,6],
among others.

The tracking of contours has been posed mainly as a minimiza-
tion or as an inference problem. Following the first perspective, the
so-called active contour methods adapt iteratively an elastic curve to
image edges, while imposing some constraints on it (e.g., smooth-
ness and compactness). The classical snakes approach [7] performs
that by minimizing an energy term associated to a parametric curve.
Geodesic active contours [9], which generalize in most situations
classical snakes [10], pose the problem from a geometric point of
view. Targets are segmented using an implicit contour representa-
tion. A non-parametric surface is evolved according to image edges,
being the tracked contour the zero level set of this surface. The main
advantage of this level set-based approach is that topological changes
of the original curve are naturally managed. Extensions of this work,
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where contours are defined in terms of the content of the region
that they enclose conform the active regions methods [11-13].

An important disadvantage of minimization-based approaches is
the possibility of converging into local minima and mistrack the
target. This drawback can be treated in a principled way by pos-
ing contour tracking as an inference problem. Now the goal is esti-
mating the posterior density of a contour given image observations.
Minimization-based approaches can be interpreted as a way of de-
termining the maximum a posteriori of this density, assuming im-
plicitly its unimodality. Problems appear when this density is not
unimodal, which can be eluded if the whole density is estimated.
This paper studies contour tracking from this perspective.

Formally, given a parametric model of the contour to be tracked,
the goal is estimating at each instant t the probability den-
sity function (PDF) of the model parameters x; (i.e., the contour
state), conditioned on the observations up to t (i.e., y1:t = [yi]f=1 ).
In many applications this PDF can be properly assumed Gaus-
sian, and its parameters can be efficiently estimated by means of
Kalman-based filters. However, in cluttered scenes, this Gaussian
assumption is usually too rough, since the PDF presents in fact
multiple modes. This happens when there is more than one model
parameterization that fits tightly to image observations, due to
the presence of the tracked shape and also of other distractors in
the scene. In these cases, it seems reasonable to maintain more
than one contour tracking hypothesis, and in that way assure to
keep track of the one that effectively adjusts to the object of in-
terest. A principled manner to perform that consists in represent-
ing p(x¢|y1::) by means of a population of particles (i.e., concrete
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X; instances), distributed (ideally) according to this PDF. In that way,
any arbitrary form of the filtering density can be properly managed,
what results in a tracking performance more robust to clutter. Pro-
viding a proper particle-based representation of p(X;|yi.¢) is the ob-
jective pursued by the so-called particle filters (PFs). Briefly, PFs are
stochastic sampling methods that sequentially approximate p(X¢|y1:¢)
by combining a particle-based representation of this density at the
previous instant t — 1 (i.e. p(X;_1[y1:t—1)), and new collected obser-
vations y;. Due to that, they are commonly referred as sequential
Monte Carlo methods and good reviews of their theoretical basis can
be found in [14-16]. PFs were seminally applied to the problem of
contour tracking by Isard and Blake [17,18], in a particular form that
they termed as Condensation algorithm.

The Condensation algorithm is definitely the most popular form
of PF applied in vision-based tracking applications. However, its com-
putational cost (which depends on the amount of particles needed to
represent p(X¢|yi::) properly) increases exponentially with the num-
ber of parameters of the target model used. That is, it suffers from
the curse of dimensionality. This is a serious drawback in contour
tracking problems. In general, targets being tracked present global
transformations of their outline (e.g., translations, rotations, etc.), as
well as simultaneous local shape deformations. Consequently, the
dimension of the parametric model of the contour is rather big,
what makes the cost of its robust tracking high. The good news is
that, since the problem of Condensation with the state dimension-
ality is well known, different generic strategies have been proposed
to counteract it. In this paper we analyze the performance of three
of these strategies in the context of visual contour tracking: the
unscented particle filter (UPF), the Rao-Blackwellized particle filter
(RBPF), and the partitioned sampling (PS) technique. We contribute
with their adaptation in the context of contour tracking using active
shape model (ASM). Developed mainly by British research groups in
Leeds, Oxford and Manchester [19-21], ASMs represent the outline
of an object by means of a parametric model, whose representabil-
ity is limited to a given space of transformations, whether generic
(e.g., Euclidean or affine transformations of a basic shape) or spe-
cific (shape deformations learned from the statistic analysis of train-
ing data). Our study focuses on ASMs since exploit naturally the a
priori knowledge on the feasible shapes that a target can take. As
traditionally formulated, they do not consider topological changes
of the contour. However, in [22] is shown that applying their same
principles on implicit contour representations, a parametric model
is obtained that can manage such cases. ASMs have been shown ef-
fective in many application domains [20], and thanks to their para-
metric nature, their use in inference-based contour tracking is direct.
However, as it is shown in [23,24], strategies exist to consider also
non-parametric contour representations inside this framework.

As will be stated in the respective sections, two of the three
techniques studied in this paper (the UPF and the PS) have also
been applied previously in the contour tracking problem by other
authors. However, our proposals differ significantly from the ones
in these previous works. On the one hand, we use a more com-
plete contour model, accounting for global and local shape trans-
formations. On the other, our model of the contour observation
process is more rigorous and accurate, leading to a better interpre-
tation of the evidence extracted from frames. Another contribution
of this paper is an exhaustive study of the performance of the pro-
posed algorithms. This has been done using synthetic sequences,
distorted with different levels of noise. Using the knowledge of the
parameters used to generate the sequences, the performance of each
technique has been measured quantitatively. This has allowed us
to rank proposed algorithms at each evaluated situation, and to
identify their strengths and weaknesses. Algorithms have also been
tested on real sequences, in the contexts of hand and pedestrian
racking.

Table 1

List of acronyms.

AR Auto-regressive

AR1 Auto-regressive process of first order
ASM Active shape model

CBM Constrained Brownian motion

IPPF Independent partition particle filter
KF Kalman filter

MCE Mean contour error

0OISD Optimal importance sampling density
PDF Probability density function

PF Particle filter

PF-EIS Particle filtering with efficient importance sampling
PS Partitioned sampling

RB Rao-Blackwellization

RBPF Rao-Blackwellized particle filter

SIS Sequential importance sampling

SISR Sequential importance sampling with resampling
SNR Signal-to-noise ratio

UKF Unscented Kalman filter

UPF Unscented particle filter

The remainder of this paper is organized as follows: Section 2
gives an overview of the used contour model representation (the
ASM), and introduces the approach used to jointly account for the
affine transformations and the local deformations of a given shape
of interest. Then, Section 3 focuses on modeling the shape evolution
along time, and Section 4 on how the shape model relates to observa-
tions in images. Section 5 formalizes the visual tracking of contours
as a Bayesian inference problem, and presents the general solution
to this problem given by the importance sampling technique, which
has led to the so-called particle filtering. The main drawbacks of this
approach are remarked, and three different strategies to deal with
them are adapted in the following sections to the contour track-
ing problem: the UPF (Section 6), the RBPF (Section 7), and the PS
(Section 8). A comparative study of the performance of these ap-
proaches is presented in Section 9, and final conclusions are provided
in Section 10. A list of the abbreviations used in the paper is given
in Table 1.

2. Contour representation

In many application domains the use of shape tracking algorithms
is motivated by the need not only to localize a given target, but also to
identify its specific pose or configuration. To fulfill that, a generative
model of the target shape variability is required. Many authors have
worked on developing representations of shape variability in many
different ways. Refs. [19-21] review the major contributions on this
field, and then focus on the description of a model-based approach
to shape tracking, commonly denoted as the ASM approach. There
exist different possibilities to represent parametrically the outline of
an object. In the ASM formalism, the dominant approach is based on
2D contours modeled by B-spline parametric curves.

B-splines construct expressions of a 2D contour as a weighted
sum of Ng basis functions. Contour point coordinates r(s)=[x(s) y(s)]"
of 2D shapes are obtained by an expression of the form

G-l &l

¥(s) of, B Ilel

or more compactly r(s)=U(s)q. We denote with Oy, a column vector
of Np zero elements. B(s) is a vector maintaining Np basis functions,
which are curves composed of polynomials of degree d with finite
support. They are C4-! continuous, which means that the contour
derivatives up to the (d — 1)-th are smooth. q=[q* ¢’]" is the vector
of the Ny control points that weights the basis functions to generate
a desired curve. Thus, its dimensionality corresponds to Ng = 2N,
being N¢y = Ng. The parameter s evaluates the linear combination of
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Fig. 1. Spline contours in a nutshell.

polynomial at concrete points. Fig. 1 sketches graphically the ele-
ments involved in the spline-based contour synthesis.

In practice, contours are not commonly synthesized from any
arbitrary value of s, but at predefined discrete values. By fixing a
sampling ratio Ns; between control points, a discrete contour is syn-
thesized, consisting of N5 2D coordinates (x,y), with N5 = N¢pN.
Curve sampling points s; are regularly placed along the support of
the spline parametric space, given by {s; :i/Nsr}fﬁal. Thus, a sampled
contour representation is obtained with

x(s0) B(so)" 0y,
X(sn,_1) Blsy, )" O%NB [qx]

¥(s0) of,  Bio) |le)
Yisne-1)d | ol.(lg B(SN;,l )"

or in compact form r = Uq.

Using B-spline curves, a silhouette is represented by a point q in
an spline space RN, For complex silhouettes, the dimensionality of
this space can be considerably big. This is inconvenient for tracking
purposes. Estimating a 2D shape would require managing high di-
mensional state vectors, which would be computationally expensive.
Besides, the estimation obtained would be prone to be erroneous:
the bigger the number of parameters to be estimated, the higher
the probability of wrongly estimating some of them. For this reason,
models requiring less parameters are preferred. The most popular
approach is based on defining a shape space which details a map-
ping of shape space vectors ¢ € R to spline space vectors q € RN,
where N¢ < Ny. In that way, the feasible values of q are constrained
in a given subspace of RMe, Next section focuses on two common
methods to generate desired shape spaces to describe, respectively,
local and global contour transformations.

2.1. Local contour transformations

A simple way to construct a generative model to account for local
variations (i.e., deformations) of a mean shape q consists in defining

a linear shape space (WP, q) of the form
q=WPc +q.

WP is an Ny x N shape matrix, ¢P the shape space vector and q
the control points of the average contour of the modeled shape. The
resultant vector q corresponds to a linear combination of the columns
in WP added to q. Thus, the family of shape variations represented
by £(WP, q) depends on the columns of WP, which are the basis of
the shape space. To account for the specific variability of a shape of
interest, the usual approach is establishing #(WP, q) from training
data. Given a set {ql-}?’:1 of spline control points of shapes in a training
sequence, its mean and covariance (¢, X) are computed by

I
q= N Z qi

i=1

1Y _ g

T=52 (@-a)4q-ay,

i=1
where ./ is a metric matrix which allows to measure the distance
between B-spline curves from only their control points (see [20,
Chapter 3]). Performing a principal component analysis on X, the
principal modes of variation of the examples in the training data are
obtained as the eigenvectors of X. The N, most significant eigenvec-
tors (i.e., the N, with largest eigenvalues) are used to conform the
basis in WP. N. is usually established as the minimum number of
eigenvectors whose sum of eigenvalues exceeds a given percentage
of the total eigenvalues sum. The eigenvectors discarded are con-
sidered as accounting for noise in training examples. The interest-
ing point is that Nc <Ng, and thus a more compact shape model is
obtained.

2.2. Global contour transformations

A possibility to construct a shape space that accounts for global
transformations consists in designing a matrix WR parameterized
to account for a given space of similarities, like Euclidean or affine
transformations. If q is the outline of a planar target, these spaces
synthesize the image projections of this target under specific rigid
transformations in 3D. Due to that, in an abuse of language, these
shape spaces are commonly said to model rigid contour transforma-
tions.

To model the affine transformations of q a 5D shape space can
be defined with the expression

q = WR(cR)q + TcR,

where the shape vector ¢® = [ty ty sx sy 01" specifies 2D translation,
scaling and rotation of this shape. W() is a function matrix on cR
given by

WA (c) = [SXINCP ON,, <Nep } [cgs Oly,, —sin0ly,, ] , 1)
On,  SyINgxNg | LSinOly,,  cosOly,,
and T the matrix
Iy, On, On, On, O ]
T= p P p p o |, 2
[ON@ In, On, On, On, @

Notice that this proposal of affine shape space is non-linear. Taking
advantage that q is constant along a sequence, an alternative 6D
linear shape space #(W, q) can be defined, with

wi[gle Qs T On O B
Ov, 1n, On, @ @ Op,l’

where q = [¢* ¢’]". Now a spline-vector q is synthesized with the
expression

q=W-Rc* 1 q. 3)
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The vector c® relates with the affine parameters in c® as

R =ty ty (sxcos®—1)(sycos0—1) (sysinB) (—sysin 0.

2.3. Local and global contour transformations

Preceding sections have modeled separately the local and global
transformations of a shape. However, in real applications targets
usually display both transformations simultaneously. To account for
both in a single parametric model, we can use the expression given
in [25]

q=WR(cR) (WP + q) + TcF, (4)

where ¢® maintain the local deformation parameters and c® the
affine transformation parameters. WR and T have the same form as
in (1) and (2). In order to obtain a linear shape model of the same
form as (3), in [25,26] is proposed to expand Eq. (4) by using simple
mathematical manipulation, resulting in a shape matrix W defined
as

w[w o ]l

WP —wP
where WY and WY correspond to the upper and lower half of W?,
respectively. The parameters of this shape space relate with the affine
and local deformation parameters as
¢ =[c® sycos0c sy sinOcP]".
The drawback of this approach is that it induces linear dependencies
between the elements of the parameter vector ¢/, which is undesir-
able. The rotation and scaling of the shape are jointly managed by
several parameters, that at the same time account for local deforma-
tions. Since the proportion of change of this combined transforma-
tions can have widely varying magnitudes, this can cause numerical
instability in the tracking system. Furthermore, establishing a proper
model for the parameter dynamics is also complicated by this fact.
To avoid these problems, in this paper we use the shape model as
defined in Eq. (4). It has the inconvenience that contours are syn-
thesized through a non-linear expression. However, this does not
represent a problem when contours are tracked using a PF. On the
other hand, since the model parameters (c?, c®) act independently,
modeling the dynamics of their evolution is far simpler and the in-
terpretation of their values is direct.

3. Contour dynamics

In visual contour tracking applications, the usual approach to
describe the expected evolution of the parameters of a given model
is by means of an expression based on discrete time series. Given a
parameter c, an auto-regressive (AR) process of order n

n
=Y tyCy + bowe
k=1

is used to describe its dynamics, where o are real constants, being
o, 70, and bowr is a stochastic disturbance term corresponding to a
Gaussian white noise process with parameters ./(0, bobg).

For mathematical convenience, dynamics are commonly ex-
pressed in the vector-matrix form proposed by the state-space
notation. In that way, the n-th order dynamics of c; is described as
a first-order Markov process in state space, given by

Xt = AX;_1 + Bw, (5)

where X;=[c; €1 ...ct_(n_l)]T is denoted as the system state, A is the
system matrix that defines the deterministic part of the dynamics,

and B is the noise matrix that modulates a Gaussian perturbation
vector w; ~ /7(0,I). They are, respectively, defined as

L3 IY) On-1 n

1 0 0 o0 bo 0 8 8
A=|0 1 0 0 and B= ..

0o 0 .. 1 0 0 0 00

A third parameter X can be added to fix a desired mean dynamical
behavior, leading to the following expression of dynamics:

Xt —X= A(Xt,1 - )_() + Bw;.

In order to properly set A, B, X for a given problem, different pro-
posals have been done to establish them from training sequences
[27-29]. Although learning techniques provide quite accurate de-
scriptions of the behavior observed in these sequences, their use in
practical applications may require providing very long and complete
training examples. Otherwise, a model very specific to the given data
may be obtained (i.e., the overfitting problem), which can be obvi-
ously counterproductive. In general, in many applications the a pri-
ori knowledge on the dynamics of a process is quite loose, since its
evolution can perform a wide spectra of variations. In these cases,
instead of determining the AR parameters from training sequences
it is better to establish them from statistics of the expected motion.
In this paper we follow this second approach to parameterize AR
processes of first order (AR1). We use these simple models because
in that way the dimension of x; is minimized, which, as stated, is
interesting when PFs are used. Loose a priori knowledge of param-
eter dynamics is used to establish the AR process, defining what is
known as constrained Brownian motion (CBM) model.

For an AR1, the terms in Eq. (5) correspond to X¢ = [c¢], A= [«]
and B =[bg]. It can be shown (see [20, Chapter 9]), thatif a2 =1—¢
with 0 < ¢ <1 then the dynamics of x; resembles a Brownian motion
on a small time-scale, but in the long term it is observed that X; is
confined in a Gaussian envelope given by .47(0, 1/¢éBBT). We propose
to take advantage on that to adjust A and B in order to account
for the lax a priori knowledge about a parameter behavior that is
commonly available:

C1 that their values are confined in a given range [-1,1],
C2 that the disturbance term bow; is expected to take an average
magnitude equivalent to a given number m.

By fulfilling these two conditions we control in some way the long
and short term parameter evolution. A and B are determined taking
advantage of the following. It is well known that a random vari-
able with Normal distribution .4°(0, 62) is constrained with a 99.73%
probability in the range [—30,3¢]. From this property, the Gaussian
envelope in a CBM establishes a range of more likely x; values, which
can be adjusted to have the desired bounds [/, []. Thus, a CBM that
fulfills constraint C1 requires that

I =3bg/Ve. (6)

Another property of normal random variables .47(0, 62) is that the
expectation of their absolute value corresponds to ¢./2/m. This prop-
erty can be used to tune the CBM to fulfill C2, since the disturbance
term bow; of an AR process follows a distribution ./7(0, bobg). This
requires a by value given by

bo = my/n/2. ™)

Hence, the more likely disturbance expected m determines the value
of bg. Once by is established, then combining (6) and (7) is found that
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&=(9mm?2)/(2I2) and the parameter o of the desired AR1 is obtained
asa=+1-¢

In case there exist correlation between parameters, a variant of
this approach can be used. Using the eigenvectors of the covariance
matrix of correlated parameters, parameters are projected on their
diagonalized space, and then a CBM is established there, confined in
a range defined by the matrix eigenvalues. Next, this CBM is trans-
lated to the original parameter space, just undoing the eigenvector
projection.

4. Contour observation model

Once modeled the shape of the target and its expected dynamical
behavior, it lacks to clarify how the model relates to the information
available of the target to be tracked (i.e., its measurements). This is
the task accomplished by the system observation model.

In contour tracking applications, observations usually correspond
to salient edges in frames. The typical procedure to extract them is
based on synthesizing the contour expected to be found in a frame,
and establish several measurement lines normal to this contour, at
different points along it. Each measurement line determines a vec-
tor of image pixels that are first preprocessed (to filter out image
noise, or segment the target of interest according to some discrimi-
nant feature) and then an edge detector is applied. The edge closest
to the predicted contour is commonly selected, and determines the
contour observation at this contour point. This approach is very pop-
ular because of their low computational cost, and with respect to
alternative approaches, as could be defining observations in terms
of spline contour points deducted from image features [26], it is in-
sensible to shape reparameterization (see [20, Chapter 3]).

It is important to notice that the observations obtained with
this procedure do not provide the localization of the contour being
tracked but just its normal displacement with respect to the con-
tour used to generate the measurement lines. This fact, obviated
or misinterpreted in many works, reflects the well-known aperture
problem. That is, using just local information, the localization of a
contour point in the image is ambiguous. In this case, from the va-
riety of feasible contour displacements that may have occurred, the
one normal to the contour is perceived. In other words, we cannot
associate a contour point with its corresponding observation, but we
can compute the normal component of this association.

Hence, the described measurement process provides the normal
displacement between a contour in the image rf, and a measure-
ment contour ry, used to establish the measurement lines. To relate
these observations with a given shape state x, simply it has to be
computed the expected normal displacement between r;; and the
contour rx synthesized from x. If the displacement in both cases
match, this means that ry and rx overlap. Otherwise, the divergence
observed reflects their misalignment (Fig. 2). This leads to the fol-
lowing observation model:

yr=NLU ((WR (xR) (waD + q) + TxR)
— (WR(x}) (WPXB + @) +TxE ) ) + v,

where U is the matrix that translates spline control points q onto
contour samples, and Ny, is an Ns x Ny matrix maintaining the normal
vectors [nx(s;) ny(si)]T at the points sampled along ry, (synthesized
from xp,) as

nx(So) 0 0
0 nx(s1) ... 0

_ .. Tlx(SNS,ﬂ
Nin = ny(so) O 0
0 ny(s1) ... 0

: ; 1y(Sn,—1)

Fig. 2. Contour measurement process.

Fig. 3. Inherent likelihood densities for different measurement lines, in Kalman (a)
and particle filters (b). The 4 solid circles in (b) show, respectively, the measurement
contours r,, of 4 different particles, which lead to the plotted likelihood densities.

In a Kalman-based filter this measurement extraction process is com-
monly performed once per image, where ry, is defined in terms of
the Kalman state prediction (i.e., r; =ry in Fig. 2). The collected ob-
servation vector y is assumed to provide the normal displacement
with respect to 1y, except for some Gaussian disturbance. This im-
plicitly means assuming that the state likelihood density p(y|x) is
Gaussian, that there are no more edges in the image than the ones
detected (i.e., just the ones closer to ryp), and that these edges cor-
respond effectively to the tracked target (Fig. 3(a)). This is obviously
very unrealistic in many application domains. In more formal terms,
from all the edge information y; available at instant only a small
subset y[" €y is considered in the estimation process.

In a PF the same measurement process is performed, but for each
one of the particles considered. The specific measurement process
of each particle uses a measurement contour r, defined in terms
of its own particular state value. Since the edges detected by each
particle can correspond to different objects in the scene, this inher-
ently means that the likelihood function p(y:|X;) can be multimodal
(Fig. 3(b)). This is an essential difference with respect to Kalman-
based solutions, that explains why PFs can overcome them in
cluttered scenarios. An analytic form of the multimodal p(y:[x:)
underlying the PF measurement process is proposed in [30], where
not only the presence of cluttering edges is taken into account, but
also the possibility of contour occlusions or misdetections.

5. Contour tracking using importance sampling

The goal of PFs is to generate a particle set representing prop-
erly the distribution p(X¢|y1:¢). This density is just the marginal of
P(Xo:¢ly1:¢), which we use in the following to formalize PFs more



D. Ponsa, A.M. Lopez / Pattern Recognition 42 (2009) 2372 -2391 2377

easily. Expressions derived to properly represent p(Xo.t|yi::) will
necessarily characterize p(X:|y1.:). Hence, the task to be fulfilled is
determining a particle set that should correspond to a random sam-
pling of p(Xg:t|y1:¢). Since this density is unknown, generating sam-
ples from it is not possible. However, we can take advantage of the
importance sampling technique [31] to approximate it. This method
requires that the following assumptions hold:

o Although p(Xo.t|y1:¢) cannot be sampled, it is possible to evaluate
it for a concrete Xg.; up to a constant factor.

o There exists an importance distribution q(Xo.¢[y1:¢) that can be sam-
pled, and also evaluated up to a constant factor. This distribution
is such that p(Xo;¢[y1:¢) > 0 implies q(Xo:¢|y1:) > 0.

Very roughly, the procedure carried out is the following: a sample
set {x0 t}r , is first generated from q(Xo:¢t|y1:¢)- Then, a welght w
associated to each sample x0 +» Which takes into account if x ; can
be considered really a sample of p(Xo.(|y1:¢). The desired posterior
distribution p(Xo:¢|y1:¢) is finally approximated by

N

PN(Xo:¢l¥1:0) = 25,‘&'5/5”, (8)
i=1

where 6_u is the Dirac delta function centered at xg:)[, which is a

random sample generated from q(Xo:¢|y1:¢), and

) = wld

N -
v
j=1

Wi _ P(Xg;)flmzr)_
q(xgIy1:e)

The weights w; and w; are denoted, respectively, as normalized and
unnormalized importance weights. If the importance function is cho-
sen of the form

t
q(Xo:¢ly1:t) l_[ q(Xk|Xo:k—1¥1:4),
k=1

the weighted sample set in (8) can be estimated efficiently along
time by a recursive expression. Using Bayes’ theorem, the importance
weight w; turns out to be

P(VelX0:e¥1:t—1)P(Xe|X0:t—1V1:6—1)P(Xo:¢—11¥1:¢-1)
P(Vely1:t-1)a(X0:¢1¥1:¢)
P(VelXo:e¥1:t—1)P(XeX0:t—1V1:¢-1) P(X0:t—11¥1:6-1)
p(Yely1:e-1)a(Xe1Xo:e-1¥1:0)  d(Xo:e—11¥1:6-1)
P(YelXo:¥1:0-1)P(X¢ |X0:t-1¥1:0-1)
= We_1. (9)
P(YelY1:e-1)9(Xe1X0:c-1Y1:t)

Wy =

Thus, the importance weight of a particle at instant t can be com-
puted in terms of its preceding value. In many formulations, the term
p(Vely1:¢—1) is omitted from (9), since acts as a normalization factor
which cancels when w; is computed. In most practical cases, since
first-order state dynamics are used and observations are indepen-
dently conditioned on X;, the weight w; is finally computed as

o P(YelXe )P(Xe X 1)W

q(Xc|Xo:c-1Y1:t) (10)

This procedure conforms what is denoted as the sequential im-
portance sampling (SIS) algorithm, which consists in the recursive
propagation of weights and samples of py(Xo:¢[y1:¢) as each new mea-

surement is received. The initial particle set {xg),wg)}’\’ 1 bropagated

[{ngea wyhﬁﬂ SISRHXO t—1> wt 1} s Y1
fori=1to N do
Draw x;" ~ q(x1%{) 1Y 1:1)
Set x0y = [xg-1 X;"]
Update weight

w(i) _ (yt|x0 pY1e—1)p(x ¢ )|Xo b1 Y1:t—1) )(i)
t a(x x5 i) =1
end for

Resampling Step _
{ Xo t wtl)} im1] = R[{x((f% wt(l)} i)

Fig. 4. Sequential importance sampling with resampling algorithm.

by this algorithm is determined from system priors, so that

X ~ q(xo)

(i)
wy' =1.

= p(xo),

However, if this procedure is applied, it can be proved [14,32] that
at each iteration the variance of weights can only increase, which in
practical terms means that after several iterations, all but one par-
ticle will have negligible weight. This provokes that a large compu-
tation effort is devoted to updating particles whose contribution to
PN(Xo:¢|y1:¢) is almost zero, which consequently represents a poor
approximation of p(Xo:t|y1:¢). This is commonly denoted as the de-
generacy phenomenon. An operative solution to this problem did not
appear until the last decade, when in [33] was proposed the addition
of a resampling step at the end of the SIS iteration. The intuitive idea
is to get rid of particles with small weights, focusing on particles of
bigger importance. This is achieved by resampling with replacement
the point mass distribution py(Xo:¢|y1:¢), generating a (theoretically)
equivalent point distribution density given by

N
— 1 .
PN(Xo:¢lY1:t) = N ; bxgl'

With this process, the importance of each particle now gets reflected
in the number of copies generated from it, having each copy a weight
equal to 1/N. This obviously resets the particle weight variance to the
feasible minimum. To implement the resampling step, several algo-
rithms have been proposed, being popular multinomial [33], strat-
ified [34], residual [35] and systematic [36] resampling schemes. A
comparison between them can be found in [37].

This resampling step is applied by some authors at each SIS iter-
ation. However, since its finality is addressing the degeneracy prob-
lem, it is reasonable to apply it only when this degeneracy effectively
is present on the particle set. A suitable measure of degeneracy is
the effective sample size Ngg introduced in [32], a term commonly
estimated (see [5,14,30]) using the approximation

N .
Neg ~ 1 / S w2

i=1

In the ideal non-degenerated case, all particles have identical weight
1/N, resulting that Ney = N. As the weight variance increases, Neg di-
minishes. Thus, a common approach is applying the resampling step
only when N is below a defined threshold Ng,,. Fig. 4 specifies the
general framework of sequential importance sampling with resam-
pling (SISR) algorithms, popularly denoted as PFs, and Fig. 5 details
the resampling step.
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Fig. 5. Resampling step.

In many tracking applications, the importance function used in
the SIRS algorithm is based on the prior distribution of the tracked
state (i.e., q(X¢|Xo:t—1¥1:t) = p(X¢|X¢_1)). This particular implementa-
tion, in which particles are propagated along frames by the expected
system dynamics model, is commonly referred as Bootstrap filter or
Condensation algorithm. From that, the update of the weight of par-
ticles in (10) reduces just to

We o p(Ye|Xe)We_1,

requiring only to evaluate the likelihood of observations.

This algorithm has lead to good tracking results in many appli-
cation domains, but it has the drawback that if the dimension of x;
is big, a very big amount of particles is required for a robust per-
formance. In fact, this is a problem inherent of the importance sam-
pling technique, made more evident in the Condensation algorithm
because of the poor importance function used. The basic problem is
that since to represent p(Xo:t|y1:¢) we use samples from a proposed
q(Xo:¢ly1:t), it can be shown [31] that with the dimensionality of x;,
the variance of the weights associated to particles increases expo-
nentially. This means that the bigger the state dimension, the smaller
the number of effective particles (i.e.,, with non-negligible weight
we) representing the estimated distribution. As a consequence, an
importance sampling estimate is totally dominated by just a small
percentage of samples. The brute force to face this problem con-
sists in using a huge amount of particles. In the following sections
we explore three more intelligent strategies, adapting them to con-
tour tracking based on ASM. Their goal is reducing the variance of
the weight of particles at each iteration, which implies reducing the
amount of useless particles generated. Due to that, they are com-
monly referred as variance reduction techniques. The techniques an-
alyzed pursue this goal by:

e using a better importance function in the SISR algorithm, consid-
ering current observations in their definition (Section 6),

e estimating part of X; analytically, and the remaining part,
necessarily of lower dimensionality, by means of a particle set
(Section 7), and

o taking advantage that in some contour tracking applications, part
of the parameters in X; can be estimated independently of other
parameters (Section 8). This can be used to guide importance sam-
ples to zones of high likelihood according to observations.

6. Unscented particle filter

The key point of an SISR algorithm is the importance function
q(X¢|Xo:t_1Y1:t) used to generate particles at each time step. In [14]
it is proved that the optimal function to carry this task (in terms of
minimizing the variance of the particle weights w;) is p(X¢|Xo:¢_1Y1:t)-
Note that this optimal importance sampling density (OISD) is condi-

(x50, S w"} V) = UPF[{x)_ . S w0l 1Yy

fori=1to N
(A s >) UKF [(xi”l 2""“’) Vi t}
Set q(Xt\xé;LlyI:a = N (&, =)

Draw X@ ~ Q(Xt‘x(()gfl}’u)

Set X073 S {X((;Ll Xiw] and ng;@) £ {26{’;8)1 Efx(i)]
Pyl 1% ) (4
W~

Update weight ’LU(L) = o
P B T

1
end for

Resampling Step _ ' _
{00 oo v wi} ) = R, Sor ) wp )

Fig. 6. Unscented particle filter.

tioned on current observations. In practical applications, its determi-
nation is commonly a non-trivial task. The unscented particle filter
[38] proposes as solution approximating this function locally around
each particle xE))t 1 by means of a Gaussian distribution. In concrete,

for each particle x0 ‘t_1» an unscented Kalman filter (UKF) is used to
generate and propagate a Gaussian approximation of the OISD

qxex)_ i) = /D, 220,

In practice this means that for each partlcle ( w(') +)» now it is also

0:t’
required to maintain matrices Zm detailing the covariance of the
associated Gaussian. Fig. 6 details our adaptation of this strategy for
the described contour tracking problem.

Following this pseudocode we see that the execution of an UKF
is required for each sample, resulting in a high computational cost.
However, in practice one can take advantage of a remarkable fact
of PFs applied to contour tracking applications. At each iteration,
since the contour likelihood p(x;|y:) is a remarkably narrow function,
the amount of particles surviving the resampling step is commonly
small (in most cases around the 20% of the total of particles). Due
to this fact, at the time of propagating particles most of them are
identical, and can share the same approximation of the OISD. Thus,
at each iteration it has to be evaluated just as many UKFs as different
surviving particles, reducing a great deal the computational cost of
the algorithm.

6.1. Related approaches

The application of the UPF in visual contour tracking applications
has been also proposed by other authors. However, their approaches
differ significantly from ours. In [39] a face tracker is presented, based
on modeling the face outline by means of an ellipse of fixed size and
orientation. The system only accounts for translations of the contour
model. In [40] a contour tracker is proposed, aimed at the estima-
tion of affine transformations of a rigid contour model. These two
approaches apply unnecessarily the UPF on their tracking problem,
because as long as they use linear system and observation models, a
Kalman filter (KF) is enough to approximate the optimal importance
function for each particle. In addition, both approaches derive from
a wrong model of the contour measurement process. They assume
that the disparity coordinate-by-coordinate between predicted and
observed contours is measured in the image, while in practice only
the normal disparity with respect to a defined measurement con-
tour is really obtained. In our proposal, the application of the UPF is
completely necessary, since the contour model used is non-linear.
Moreover, a better modeling of the observation process is done,
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Fig. 7. Unscented Kalman filter.

interpreting rigorously the evidence extracted from processed
frames. Details of the specific UKF used in the UPF proposed are
shown in Fig. 7, in accordance with the observation model described
in Section 4.

The use of Kalman-based filters to approximate the OISD was first
suggested in [14]. In this paper the authors also proposed an alter-
native method to do that, based on computing the OISD Laplace’s
approximation [41]. Following this approach, in [42] a generalization
of this strategy has been recently proposed, denoted as particle fil-
tering with efficient importance sampling (PF-EIS). This work shows
that in some situations approximating the OISD with a Gaussian is
improper, since it is in fact multimodal. However, when this hap-
pens, there are cases where the OISD of part of the state is indeed
unimodal conditioned on the remaining part of the state. Hence, they
propose to split x into two parts: the multimodal and the unimodal
part. The multimodal part is sampled using transition priors, as reg-
ular PFs do. Conditioned on these samples, now the OISD of the other
part can be correctly taken as Gaussian. By applying the Gaussian
OISD approximation only in this state partition the effectiveness of
the strategy is increased.

A proposal that is close in philosophy with the UPF is the Turbo
PF [43]. It is a sort of simplified version of the UPF, where at each
time instant a unique Gaussian OISD is defined to generate all the
importance samples. Their implementation is based on the cooper-
ation of an extended KF with a PF, whose relationship mimics the
one of master and slave filters in Turbo decoding.

Besides the Gaussian approximation strategy, other heuristic
methods have been proposed to use recent observations to char-
acterize the OISD. Given yy, in [43] is proposed to use the gradient
descent direction of the measurement model to define an impor-
tance function that move particles close to it. Other authors propose
not using y; directly, but some other image information heuristically
correlated with it. For instance, in [44] the pixel-based interframe
motion Iy is used as a clue for target movement. Using this in-

formation, their approach consist in defining the state transition
model as p(X¢||X;—1lo:¢), which in turn is used to generate samples.
Similarly, in [45] this same idea is applied, but just to define the
OISD approximation, keeping the state transition model based just
on priors.

7. Rao-Blackwellized particle filter

The strategy considered in this section is based on factorizing the
desired density p(Xo:¢|y1:¢). If the state to be estimated is divided into
two parts Xo.c = [x5,xF2]", then this density can be factored as

P(XELXE21y1:¢) = POXEL Y1 P(XEA XD Ly 1:0). (11)

The Rao-Blackwellization (RB) technique [14,46] proposes to use this
structural information to infer analytically a part of the state (xP 2)
conditionally upon the other part of the state (x0 r) which is esti-
mated, respectively, by a sequential Monte Carlo algorithm. In the
concrete case of (11), this means solving:

. p(x§?t|xg}ty1;t) analytically;
p(xgIy1:¢) by means of a PF.

From that, an estimation of the posterior density p(x51xF2|yy.) is
obtained, given by the following mixture of densities

PN (Xo:tly1:t) = ZWEI)p X0 Yi:0): (12)
i=1

The RB approach states that if the analytic solution to p(x \xo Yi:t)
represents precisely the inherent real distribution, then the proposed
methodology directly leads to overcome the accuracy of a classical
PF approach, since the variance of the particle weights is reduced
and a bigger particle diversity is maintained after resampling [46].

Filters using this strategy are commonly denoted as Rao-
Blackwellized particle filters, and have been applied in many differ-
ent areas and problems: jump Markov linear systems [50], neural
networks [47], map learning [48], positioning and navigation [49],
surveillance [51], multiple target tracking [52], template tracking
using rectangular [53] or articulated models [54], etc. In this paper
we contribute with the novel adaption of this technique to the
contour tracking problem.

Behind the RB concept lies a rule of thumb in estimation theory:
if something can be solved analytically, do not solve it by means of
sampling techniques. In our case, to obtain an analytic solution for
p(xb2|xPLy1.r) we use a KF. This inherently means modeling the es-
timation of X" given x"! by means of linear Gaussian processes. In
the problem of visual contour tracking, estimating part of the state
analytically from y;.¢ is in general bad posed, as non-Gaussian arti-
facts can distort observations. Thus, the benefits of applying the RB
technique onto this application cannot be taken for granted a pri-
ori. To ascertain if there are more advantages than disadvantages in
using this technique, we have evaluated its performance experimen-
tally, providing quantitative insight onto this point (see Section 9).
Let us first detail the Rao-Blackwellized estimation ofp(x0 txg V1)
It requires updating at each time t the distribution in Eq. (12), which
implies:

o updating the sample distribution of p(xf},

sample set {(xg ", WYY

|y1:¢t) given by a weighted

o updating for each i-th sample xg:lt(i), the distribution p(x52 |xg1t(l Vi:t)
This is directly solved using a KF, which estimates the parameters

of the normal density .4/ (f(gzt'),mexPz ).
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Fig. 8. Rao-Blackwellized particle filter.

The estimation of p(x0|y;.¢) is solved using the SIS algorithm. Now,
samples xPl(z)

are generated from an importance function (x5} |y1.¢)
following the form:

t
P13 P1
l_[ q(x |X0:k,1yl:k)-
k=1

(XO tIY1 t

Using this type of importance function, the unnormalized weight
factor w; associated to each particle xg}t(') is determined recursively
as

wi) o p(yely1:e- 1xglf'))p(Xfl( )|xf_l(1'))w(,-)
t P1(i), . P1(i) t—1°
Q(X[ |x0[ 1Y t)

If the prior distribution p(x!! |x _;)is used as importance distribution,
then w; is proportional to

P1
We o p(¥elY1:t-1Xg:0 ) We—1-

Thus, the unnormalized weight wi) requires just to evaluate

P(VelY1:— 1x0 t ) The nice point of the Rao-Blackwellization strategy
is that this term corresponds to the evaluation of y; in the one-
step-ahead Kalman prediction of the observation density computed
when p(xg?t|xg}t(')y1;t) is solved. This density corresponds to

p(YtlYl:t 1x0t ) /V(Yt\t 1 Zm— 1)

where yy_1 and )2”[ ; are the mean and covariance of the observa-
tions expected from a contour with B-spline contour points corre-
sponding to the joint state [x/'® o A

Fig. 8 details a generic implementation of the RBPF proposed. In
practice, this pseudocode corresponds just to an iterative method
to update a Gaussian mixture model in py(x5!xF2 yo:;). In this mix-
ture, one could interpret that several hypothesis on the sequence of
xP1 values are maintained, and for each one of them, a KF is used
to estimate the posterior on x"2. Notice that x"! and x" require
uncorrelated dynamical processes, since we need to sample from
p(XP] Ixm(l))

In our specific application of the RBPF in the contour track-
ing problem, the state partitions [xP! xP2] isolate the shape
parameters with a non-linear/linear relation with the contour ob-
servations (i.e., X! =[sy s, 0]" and xP2 = [t, t, X°]", respectively). If
we use a measurement contour X, = [Xh! xP2] so that xb! is equal
to xP1, then for a fixed xP! the relation with the observations is
given by

Y™ =Hyn (x7? - xf?)

»

where

Hyr = NTU[[qu’ ONCP]WR(x”l)WD]
Oy, 1n,
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Fig. 9. Almost rigid contour zone. Left: graphical representation of the contour
representability of a shape space (WP, q) modeling a hand with a pointing finger.
Right: the bold line marks the contour zones that vary minimally for any valid x"
parameterization, and can approximately be assumed as rigid.

7.1. Related approaches

RBPFs are also referred as marginalized particle filters. Under this
denomination, it is described in [55] their particular general form
in three different types of nonlinear state-space models with linear
substructure: diagonal, triangular, and general models. The model
considered in this section is an example of the diagonal case. Close
related with RBPF are PF with mode tracking (PF-MT) [42]. Their
strategy is in essence the same: making a more efficient use of par-
ticles by applying them just to part of the state. The difference is
that while RBPFs estimate a Gaussian distribution for the rest of the
state, PF-MT just estimates the mode of its underlying distribution,
which has not to be necessarily Gaussian. No linear substructure is
required in the tracking problem, just unimodality in the posterior of
the non-sampled state part. Taking that into account, PF-MT can be
seen as a simplification of RBPFs that generalizes their applicability.
Note that in PF-MT the state partition is not predetermined before-
hand from the system linear substructure, but it can be established
dynamically at each time instant. Examples on the application of PF-
MT are found in the context of template tracking across illumination
changes [56] and in level set-based contour tracking [57].

8. Partitioned sampling

Our third proposal to deal with the curse of dimensionality
problem of PFs arises from the following observation: in most real
contour tracking applications, the dynamics of global and local trans-
formations are independent, and therefore they can be modeled
separately. Could it be possible to estimate also them separately?
In general, the answer to this question is clearly no, as observations
manifest jointly the effect of both transformations. However, paying
attention to specific contour tracking applications, it appears that in
most cases a quite accurate estimation of the object global transfor-
mation x® may be obtained independently of its local deformation
xP. Indeed, commonly modeled objects deform just at localized re-
gions of their outline, and the rest of the outline can be assumed as
rigid (see Fig. 9). Thus, changes observed in these rigid regions will
be caused only by global contour transformations, and this can be
used to estimate x®, whichever the parameters in xP are.

The estimation of X2 cannot be done independently from xR, as
rigid transformations affect the object contour globally. However, we
will show that advantage can be taken from the isolated estimation
of xR to better estimate xP. Before arriving to that point, first it is
necessary to solve the estimation of x® decoupled from xP, which is
the topic of study in the next section.

8.1. Decoupled xR estimation

The basis to estimate x® without being affected by contour de-
formations is using with this objective the non-deformable regions

of the contour to be tracked. Obviously, the existence of such re-
gions depends on the specific object to be tracked, and requiring
them to be perfectly rigid may be too restrictive for a practical
use of this idea. To extend the applicability of the strategy pro-
posed, the rigid region requirement is relaxed to use the less de-
formable contour zone to estimate xR. Obviously, the accuracy on
this estimation will depend on the real rigidness of the contour part
selected.

First of all, a representation of the rigidness/deformability of the
points of the modeled contour is needed. As shown in Section 2.1,
the space of contour deformations .Z(WP,q) is established from
a set of aligned contour examples, showing the different contour
configurations to be modeled. From this same training set, the po-
sitional mean and covariance of contour points (f,£™) can be easily
computed. The positional contour variance (computed from the
diagonal values of ¥'™) inherently maintains the rigidness or de-
formability of points along the modeled contour. Thus, we propose
to employ it to select the contour part that can be used to estimate xR
confidently.

One possibility can be using £ to set the measurement noise
covariance R, in a way that the measurements obtained in less rigid
zones have less influence in the final xR estimation, since the in-
formation that supply may be distorted by the local contour defor-
mation. However, what we do in practice is using £™ to mask the
non-rigid zones of the modeled shape, excluding them from the con-
tour measurement process. That is, we only process measurement
lines at i-th contour points whose positional variance X (i, 1) is be-
low fX,in, where X,;, is the minimum variance along the contour
shape, and f an scaling factor (set to 500 in our experiments). In that
way we reduce the computational effort required to finally estimate

P(XR|y1:0).

8.2. Exploiting the xR estimation: partitioned sampling

As previously stated the estimation of xP requires taking xR into
consideration. Thanks to the proposal in the previous section, knowl-
edge about xR can be available, and we can take advantage from
that. We propose to use this knowledge to define a better impor-
tance function for the PF. In principle, one may argue that this has
little sense, as methods like the UPF already allow to define such an
importance function, but for the whole state x. Thus, why just tak-
ing advantage of that for x*? The point is that now, for the state part
concerning x®, we are not limited to just a Gaussian approximation
of the OISD: we can use an xR pre-estimation to define it in terms
of a weighted particle set. A method that exploits this idea exists,
which is denoted as partitioned sampling.

PS is a generic term for the weight variance reduction strat-
egy proposed in [58], based on modifying the SISR algorithm by
inserting additional resampling operations in its procedure. It con-
sists in dividing the state space into partitions, which can be prop-
agated independently along time using their expected dynamics.
Each partition is manipulated sequentially, propagating samples ap-
plying the partition dynamics followed by a weighted resampling
step, which is the key point of this proposal. This resampling is
driven by a weighting function that approximately evaluates the like-
lihood of particles from just the state partitions processed up to this
point. The objective is, at each resampling step, to move particles
closer to the posterior distribution to be estimated. After process-
ing all partitions, most particles concentrate around the peaks of the
posterior distribution, which improves the result achieved by the
SISR algorithm. This procedure requires the following points to be
fulfilled:

o the state has to be decomposable into parts x = [x" "]f\’: 1 with un-
correlated dynamics,
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Fig. 10. Importance sampling (top) vs. partitioned sampling (bottom).

o for each state partition x a weighting function gpi() is needed
(continuous and strictly positive), which ideally is peaked in the
same region as the likelihood of a state part composed of partitions
up to x™ (e, [x7]i_;).

In the studied contour tracking application, both conditions are ac-
complished by partitioning the state as [xF x?]T. Fig. 10 compares
graphically the classical importance sampling procedure, with the
partitioned sampling proposal. It shows how both algorithms gener-
ate a weighted sample set of a function p(x) = .A4"(0,, 62I,) with x =
[x y]7, sampling from an importance function q(x) = ./"(05, (40)212).
In the partitioned sampling case, a likelihood function g(x)=.4"(0, 62)
is available for performing the weighted resampling. The example
shows that partitioned sampling provides a sample set with minor
weight variance. A drawback of this technique is that diversity is
lost in the state part used in the weighted resampling, but there are
methods to attenuate this problem [35,59,60].

This technique has been commonly applied to multitarget track-
ing applications [58,61], and to tracking applications concerning ar-
ticulated models [5,62]. Here we adapt it to contour tracking based
on ASMs. Before detailing how this idea is implemented for esti-
mating [xR xP), first the weighted resampling procedure is described
more formally.

8.2.1. Weighted resampling method

Let g(x) be a strictly positive, continuous function, denoted as
weighting function. The weighted resampling of a particle set with
respect to g( ) is an operation which populates the peaks of g( ) with
particles, without altering the distribution actually represented by
the particle set. This is carried out by a procedure derived from the
importance sampling method.

Given a particle set {x(), W)}V | approximating p(x) as

N
PN =Y wéy, (13)

first an importance function q(x) is defined by evaluating a weighting
function g( ) on the elements of this particle set. That is

.
LR
)= 2 )

N o
= Z p(l)5xm.
i=1

x(0)

The importance sampling method states that a distribution p(x) can
be approximated from samples x/(’) ~ ¢(x), with an associated un-
normalized weight equal to p(x'))/g(x')). From that result, an alter-

{0 Y N = WR{xS), w1 N1, g()]

for i =1to /N do
0™ = g(x§))
end for

Compute p(9) = p(?) /Zjvzl o) Vi=1,...,N

Resample particle step Withlselected algorithm A
[0 Y fRib ) = Al PO}
for i(? 1 to ]{\7 do
l ci .
0 = w0
end for

Fig. 11. Weighted resampling. Notice that now the resampling algorithm A must
return the indexes {k}Y, of the selected particles.
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Fig. 12. Partitioned sampling.

native representation of p(x) is given by the unnormalized particle
set {(x, wiN | where
X’(i)

x(ki)‘

w® = p(x/ki)y/q(xki))
= wiki)y ptki), (14)

Since the importance function g(x) is defined in terms of a particle
set, now we require to know which specific particle k; from it has
been assigned to x in order to compute (14). The result of this
procedure (Fig. 11) is a weighted particle set equivalent to the one
n (13), but with lower weight variance according to the defined
importance function g(x).

8.3. Final PS algorithm

Once described the weighted resampling method, it is quite direct
taking advantage of the availability of p(y|xF), using it to define the
weighting function g( ) in the algorithm of Fig. 11. Fig. 12 shows the
resultant partitioned sampling method, which is based on adding
the weighted resampling step in the generic SISR process of PFs.
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Fig. 13. Sketches of the evaluated proposals. Squared boxes remark sampled densities and rounded ones executed algorithms.

Notice that the importance function q(xt|x8:)[71y1;t) inherently

used in the SISR part of the algorithm corresponds to

(Xt|x0 t— 1) (xt |X0 t— 1) (xtD|x€(;)_1 );
that is, it is defined in terms of the dynamics of each state partition,
which as required are uncorrelated.

An additional advantage of the PS algorithm is that the different
resampling stages that it involves allows a more flexible distribution
of the computational resources in the estimation of the different
state parts. Given a partitioned state, it may happen that one of
its parts has a more erratic and unpredictable behavior than the
others, and consequently its dynamic model is more imprecise. This
means that in every PF iteration, the region of its feasible predicted
states is bigger than the one of the other parts. Thus, for a fixed
number of particles, this region is less densely inspected for this part
than for the others, resulting in a more inaccurate estimation of this
part and, consequently, of the overall state. In these cases, a proper
strategy can be adjusting the amount of particles assigned to each
part according to their predictability, devoting more computational
resources to the more erratic state parts. The weighted resampling
step in PS (see Fig. 12) allows to implement this strategy, which was
proposed in [5].

In the studied contour tracking application, rigid transformations
(i.e., the whole hand movement) can change fast and unexpectedly
between frames, while deformations tend to change more slowly.
Thus, a number of particles M> N should be used to inspect the
feasible xR states to be more robust to their lack of predictability.
Then, the resultant distribution is resampled back to N samples in
the weighting resampling step, to recompose the complete state and
then compute its likelihood. This strategy allows, for fixed compu-
tational resources, achieving a better tracking performance. Notice
that to estimate correctly xP, measurement lines have to provide
good measurements of that. As long as these measurement lines are
placed relative to the hand position (i.e., XX values), the strategy of

using more samples to estimate x® reverts in obtaining a better x°
estimation, and, thus, a better overall state estimation.

8.4. Related approaches

Approaches similar to PS have been proposed in the context of
tracking using multiple visual cues. In essence, the idea is partitioning
the state, in order to use for each part the visual cue most informa-
tive for its estimation. In [63] this approach is used to approximate
the OISD of a PF that estimates the whole state. Structurally, the idea
is similar to the one of Turbo PFs (see Section 6.1), but now multiple
slave filters devoted to different state parts determine a particle-
based importance function for the master filter. From a different
perspective, in [64] an heuristic procedure is proposed to exploit the
conditional dependence between state partitions and different im-
age cues. Several PFs are connected in serial, which estimate their
corresponding state part taking advantage of the posteriors of pre-
ceding processed partitions. At the end of this process, the outputs
of all PFs are combined to conform the posterior of the whole state.

Interesting variants of PS have been proposed in the context of
multitarget tracking, although they are not directly applicable to
contour tracking as formulated in this paper. In multitarget track-
ing, if targets are far apart in measurement space, each target mea-
surement can be uniquely associated with it, and the joint posterior
density of the whole state approximately factors. In this case, the
multitarget tracking problem may be treated as a collection of sin-
gle target problems. The independent partition PF (IPPF) [65], takes
profit of this idea, and propose to apply in parallel a weighted resam-
pling step for each state partition (one for each target). When the
resampled partitions are joined to conform the whole state, particles
with good target estimates in all partitions receive high weights and,
more interestingly, particles with a low weight will have poor esti-
mates in all partitions. This technique is not applicable when there
is any measurement-to-target association ambiguity. To treat these
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Fig. 14. Performance quantification procedure. SNRy measures the degree of distor-
tion of the input to the tracking algorithm. SNRoyr quantifies the disparity between
the tracking output, and the ideal output (i.e., the undistorted input sequence). MCE
measures the mean contour disparity between the ground truth contour and the
estimated one.

cases properly, in [66] is proposed the adaptive IPPF, where the state
partitions are defined dynamically.

9. Experimental results

This section details the work done to objectively assess the effec-
tiveness of proposed algorithms. Synthetic and real sequences have
been processed to evaluate them quantitatively under different crite-
ria. Examples of the performances achieved can be seen in the videos
available at www.cvc.uab.es/adas/projects/contourtracking/PR/.

9.1. Synthetic sequences

With the aim of comparing proposed algorithms (see Fig. 13)
under different noise situations, we have carried out the following.
First, we have selected the problem of tracking a hand with pointing
finger as our case study, since in this application context simulta-
neous local deformations and global affine changes of the tracked
shape naturally appear. We have acquired a sequence showing the
top view of a hand displaying a representative set of feasible config-
urations. Then, the outline of the hand at each frame has been anno-
tated, generating in that way 468 examples used to train a shape and
a dynamic model. With these models, we have generated different
synthetic sequences in order to evaluate the performance of the dif-
ferent estimation methods. Generated sequences simulate the ones
of a hand with a pointing finger, which has been isolated from the
rest of elements in the image by means of an ideal skin segmentation
process. One important advantage of processing these synthetic se-
quences is that tracking algorithms use the same shape model used
in the sequence generation. In that way, the quality of the shape
model is not a factor that can alter the performance of algorithms,
as always the perfect model is used. Another obvious advantage is
that the ground truth shape parameters at each frame are available,
and they can be used to quantify the tracking performance.

To study the robustness of algorithms under noisy conditions,
generated sequences are distorted with different artifacts prior to its
processing. The tracking performance evaluation methodology is the
following. Given the sequence to be analyzed, it is first distorted with
random artifacts, according to a desired signal-to-noise ratio (SNR).
This sequence is then processed by a tracking algorithm, obtaining
the shape state at each frame. To quantify if this estimation is accu-
rate, an image-based and a contour-based method are simultaneously
applied (see Fig. 14). Essentially, the image-based method quanti-
fies the tracking performance from the degree of overlap between
the original sequence (i.e., without distortion) and a sequence gener-
ated from the estimated contour parameters. The accuracy achieved
is expressed by means of an SNR value, which is higher the better
the tracking performance. The contour-based method measures the

SNR = 6 dB

SNR,\=8 dB SNR,= 13dB

Fig. 15. Examples of noise in frames, for different situations considered in the
experiments.
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Fig. 16. Proposed representation of the evaluation results.

average disparity between the ground truth contour shown in the
sequence, and the one estimated by the tracking algorithm (i.e., the
mean contour error (MCE)).

To obtain a statistical view of the performance of the algorithms,
100 noisy sequences are generated for each different level of noise
considered. Fig. 15 gives some examples of different SNR;y situa-
tions considered in the experiments. All trackers are evaluated on
these sequences, sharing the same shape and dynamical models. To
represent dynamics, a simple AR1 model has been used, while syn-
thetic sequences have been generated using a second-order model.
This has been done that way in order to evaluate methods in situa-
tions where the dynamical model roughly corresponds with the real
object behavior, which commonly happens in real applications.

Two plots are generated for each proposed algorithm, comparing,
respectively, their performance with respect an UKF and an standard
PF. The performance measured using the image-based method is
displayed using a box-plot representation, while the median of the
performance measured with the contour-based method is shown in
an attached table. Fig. 16 describes briefly the information provided
in these performance plots.

Another criterion that we use to compare algorithms is the vari-
ance of their output (i.e., the expectation of the estimated filter-
ing density) at each frame, in the different sequences processed
for each noise level. This indicator quantifies the consistency of
algorithms in providing the same estimation besides the specific
sequence distortion. Hence, a high variance is obtained when an
algorithm is trapped on clutter artifacts, since in each experiment
they are different. However, note that a small variance does not
necessarily mean a correct shape estimation, and hence this indi-
cator just complements our performance criterion based on shape
disparity.

Before comparing the performance of the different algorithms,
first we need to establish the amount of particles used by them, in
order to make a fair comparison. The proposed methods introduce
modifications to the classical PF implementation, which require ad-
ditional computational resources. From this fact, one may think of
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establishing the amount of particles considered in each algorithm in
order to fulfill a fixed computational cost. However, this criterion is
of poor practical use, as an algorithm non-optimally implemented
may be in clear disadvantage with respect to a worse algorithm bet-
ter engineered. Moreover, the computational cost of an algorithm
can vary in practice depending on the compiler used, and the charac-
teristics of the machine available. To avoid the dependence on these
factors, we propose to compare algorithms by parameterizing them
in order to balance their capacity of extracting evidence from images.
Hence, we set the number of particles of each algorithm, in such a
way that all extract the same amount of observations per frame. In
that way, what our performance evaluation methodology reflects is
the ability of each strategy in taking advantage of the measurement
process. Following this criterion, given that a PF with N particles
performs N image measurements to evaluate their likelihood, this
algorithm will be compared against an UPF with N/2 particles, since
this one performs N/2 image measurements to estimate the Gaussian
approximation of the OISD, and N/2 more to evaluate the particles
likelihood. For the case of PS, 2N/3 are considered in the weighted
resampling step, while only N/3 conform the final particle set.
Table 2 shows the relation between the size of the particle set
returned by the evaluated particle-based algorithms.

Table 2

Particle set size of the evaluated particle-based algorithms.

PF UPF RBPF PS
N N/2 N N/3

2385

9.1.1. Performance analysis under uncorrelated clutter

Fig. 17 displays the plots of the comparative study. The analysis
of these results lead us to the conclusions exposed in the following.

The UPF overcomes the UKF (i.e., has a higher SNRoyr) in all
the tested situations (Fig. 17(a)). With respect to a classical PF
(Fig. 17(d)), it performs significantly better in all cases, except in
the case of sequences with SNR = 6dB. In these cases, due to the
non-Gaussianity of the noise artifacts, the Gaussian approximation
of the OISD is very unreliable, and results show that it is better to
generate samples from the a priori assumed model of dynamics.

The RBPF outperforms PFs (Fig. 17(e)) in low-noise situations
(noise < 10% pixels of frames), due to the fact that part of the state
is estimated analytically. However, in these cases the UKF performs
better than the RBPF (Fig. 17(b)), as this algorithm estimates analyti-
cally the whole contour state. On the other hand, in high-noise situa-
tions, the opposite behavior is observed. The RBPF does not improve
the PF performance, because estimating xP2 analytically implies that
the observation model is affected by Gaussian noise, and this is a
wrong assumption in these cases. However, with respect to the UKF,
a better performance is achieved, as estimating the state part x"! by
means of particles makes the tracker more robust to transitory mis-
estimations of this state part. In fact, results achieved manifest the
previously cited rule of thumb of estimation theory: if something
can be solved analytically, do not make it by means of particles.
Thus, in low-noise scenarios, estimating part of the state analytically
is better than estimating the whole state using a PF, but it is worse
than estimating the whole state analytically. On the other hand, in
noisy situations, where the analytical solution of the contour track-
ing problem is bad posed, estimating part of the state by means of
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Fig. 17. Plots of the performance achieved by proposed algorithms, in comparison against the UKF (top) and the regular PF (bottom).
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Fig. 18. Mean performance of proposed methods. For each noise situation the
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particles is better than estimating the whole state analytically, but
worse than estimating the whole state using particles. The RBPF
solution applied to contour tracking is half a way between analytic
and particle-based solutions, and thus, combines the pros and cons of
both methods. For this reason, it does not outperform both methods
at a given noise situation. However, in specific applications where
images could alternate high- and low-noise situations, it would be
possible that the average performance of the RBPF could improve at
the same time the one achieved by the UKF and the standard PF.

The PS algorithm has a lower performance than the UKF just
in low-noise situations (Fig. 17(c)), showing a behavior similar to
the one observed with the standard PF. However, the comparative
study of both methods certify the superior performance of the PS
with respect to a standard PF in all situations, although in the worst
noise situation (i.e., SNRjy = 6 dB) their difference is not statistically
significant (Fig. 17(f)). The performance improvement achieved is
due to the inner weighted resampling step in the PS, which delimits
more tightly the interesting part of the state space to be explored.
Thanks to that, more particles get closer to the ideal state parameters,
and the tracking accuracy increases.

As a summary, Fig. 18 plots the mean performance of the com-
pared algorithm at the different noise conditions considered. Clearly,
the UPF is the method that provides better results in most situ-
ations, being overcame by PS only in extremely noisy sequences
(SNRjy < 8dB). On its side, the PS shows its supremacy with respect
to the classical PF, leveling or overcoming its performance in all sit-
uations. Finally, the RBPF applied to the contour tracking problem
has turn out to be a method half-a-way between Kalman-based and
particle-based filters, being never the best performing method for a
given noisy situation.

The variance of the state estimations along a sequence corrobo-
rates these conclusions, ranking algorithm in the same way. Fig. 19
plots this indicator for the first shape deformation parameter, in sit-
uations of low and high noise. For the sake of clarity, results just in
the first 400 frames of the sequence are plotted.

9.1.2. Performance analysis under correlated clutter

An experiment equivalent to the previous one has been per-
formed in order to compare algorithms under correlated clutter. This
kind of artifacts simulates the distortion in the shape segmentation
provoked by distractors occluding or overlapping the target. We con-
sider three situations with a noise level quantitatively lower than
some cases evaluated in the previous experiments, but which are
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Fig. 19. Variance of the estimations of the first parameter in x” under uncorrelated
low (top) and high (bottom) noise conditions.

significantly more challenging in practice. The reason is that the per-
sistence of artifacts provoke that trackers get occasionally trapped
on them, losing track of the real target.

As Figs. 20 and 21 show, UPF degrades in this case very signifi-
cantly, performing at a similar level than RBPF and UKF. The reason
is that the Gaussian approximation of the OISD is no longer valid
in these cases. This Gaussian is commonly narrow, which is in gen-
eral good, since it means that particles concentrate tightly around
the tracked target. However, when persistent distractors are present,
the OISD is multimodal, and the UPF greedily approximate it by a
Gaussian fitted just to the mode closer to the state prediction, which
occasionally will correspond to clutter. The narrowness of the Gaus-
sian provokes that particles get trapped on distractors. Correlated
artifact are not a problem for PF and PS, since the importance func-
tion is defined in terms of a lax dynamical model, which inherently
means using a significantly wide Gaussian. Although some particles
get trapped on clutter, many of them remain close to the real target.
The variance of the output of algorithms along a sequence (Fig. 22)
manifests clearly the superiority of PF and PS with respect to the
other methods.
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Fig. 20. Plots of the performance achieved by proposed algorithms, in comparison against the UKF (top) and the regular PF (bottom).

9.2. Real sequences

Algorithms have been also tested in real sequences concerning
hand and pedestrian tracking. In the first application we verify quali-
tatively that algorithms perform in a real sequences coherently with
the results obtained with synthetic data. In the second one we show
the performance of algorithms when the tracked shape presents
more severe and abrupt deformations.

9.2.1. Hand tracking

In this test we apply the same shape model used in the syn-
thetic experiments to real sequences. A hand with a pointing finger
is tracked, in sequences where the finger follows a trajectory unno-
ticeably marked on a paper. Sequences analyzed are preprocessed
with the skin segmentation method described in [67], which iso-
lates nicely the hand from the background (Fig. 23). However, differ-
ently than in synthetic experiments, now the shape model can just
fit the tracked outline approximately. To challenge algorithms more
severely, we intentionally occlude the tracked hand at some points.
The performance of all compared algorithms is fair until correlated
artifacts appear. In these cases, the UKF mistracks the target, the
RBPF and the UPF also present problems, while PF and PS perform
more robustly, which is coherent with results obtained in synthetic
experiments.

We check also in these sequences how the analyzed techniques
increase the number of effective particles (Neg) in the density ap-
proximation. Fig. 24 show boxplots of the particle survival ratio of
each algorithm prior to the resampling step (i.e., 100Ng;/N). Re-
sults are provided considering all the frames in a sequence, clean
frames, and frames where the target is occluded. In clean frames,

RBPF
PS
UKF
PF

PF
UPF
RBPF
UKF

RBPF
UKF

SNR

Fig. 21. Performance achieved by proposed algorithms under correlated clutter.

the goodness of tested proposals is clearly verified. However, notice
the degradation of UPF and RBPF in occluded frames, due to the un-
fulfillment of the respective Gaussian assumption in which they are
based.

Fig. 25 provides an illustrative view of the performance of the
different methods under fair conditions. For each algorithm, con-
tours corresponding to the sampling of the corresponding impor-
tance function are shown. Since particles are confined in a region
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Fig. 22. Variance of the estimations of the first parameter in x” under correlated
low (top) and high (bottom) noise conditions.

defined using image information (UPF and PS), or inspect a lower di-
mensionality space (RBPF), they focus more densely on the tracked
target. Since in general the likelihood of particles increases, this in-
creases their survival ratio.

9.2.2. Pedestrian tracking

To analyze proposed algorithms in this application domain, we
have trained a new shape model from 383 silhouettes manually ex-
tracted from a sequence of a pedestrian walking laterally. This has
resulted in a two-dimensional model that account for severe lo-
cal deformations, which occur abruptly along time. We have then
applied this model in sequences representative of typical surveil-
lance scenarios, where the global contour transformation commonly
reduces to just a translation. Despite this fact, we estimate in our ex-
periments the complete affine transformation parameters using first-
order dynamics, in order to use the algorithms as formulated in the
paper. Obviously this compromises the tracking results achieved (us-
ing a constant velocity model just for translation parameters would
clearly improve them), but our goal in this experiment is not show-
ing the optimal pedestrian tracking performance, but just comparing
considered algorithms when tracking a highly deformable shape.

Fig. 23. Results of the skin segmentation method used.

Pedestrians in the sequences are segmented using a very sim-
ple background subtraction method. A Gaussian distribution is com-
puted for each pixel, from the statistics of their RGB values along the
sequence. This conforms the background model. Then, at each frame,
pixels whose RGB value is outside the 2-sigma interval of their corre-
sponding Gaussian are labeled as foreground. By doing that, a quite
rough pedestrian segmentation is obtained, consisting of blobs with
irregularities due to the incorrect segmentation of some body parts
(skin-colored pixels), shadows and reflections. Although this clutter
could be avoided using a more sophisticated background subtrac-
tion algorithm, these conditions are interesting to test the analyzed
techniques. Fig. 26 shows some results obtained in a sequence pre-
senting uncorrelated clutter due to camera errors, and correlated ar-
tifacts due to shadows. In this case, the global best performance is
achieved by PF and PS, since the poor dynamical model used does
not prevent that the other algorithms get trapped on shadows. Al-
gorithms have also been tested in a version of this sequence where
shadows and other artifacts have been manually removed. Fig. 27
shows that under this conditions, the best global performance is ob-
tained by the UPF, which corroborates the results obtained in syn-
thetic experiments (Section 9.1).

10. Conclusions

In this paper we have proposed the novel adaptation of three
well-known variance-reduction technique to the problem of particle-
based visual contour tracking using ASMs: the UPF, the RBPF, and
the PS algorithm. Our proposals differ from other approaches in the
shape model used, which accounts for local and global contour trans-
formations, and in a more rigorous model of the contour observa-
tion process, which leads to a more accurate interpretation of the
evidence extracted from frames.

In the context of tracking the outline of a hand with a pointing
finger, we have performed a comprehensive quantitative compari-
son of the proposed algorithms, determining the ones which lead to
a better performance under different noisy conditions. Results pro-
vide a clear view of the pros and cons of the proposed techniques in
general contour tracking applications. We conclude that in the pres-
ence of uncorrelated noise, except in extreme situations, the UPF is
the best choice. Otherwise, the PS is the algorithm to be used. The
RBPF reaches a performance between analytic and particle-based so-
lutions, and consequently is not the best performing method for any
given noise situation. When correlated artifacts are present, PS is
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algorithm.

Fig. 26. Output of algorithms in frames 8 (top) and 73 (bottom) of a sequence
where the pedestrian segmentation is distorted by shadows.

clearly the best performing method. In this situation, the particular
Gaussian assumptions made, respectively, by UPF and RBPF penal-
ize strongly their performance. Designing variants of their implicit

Fig. 27. Output of algorithms in frames 8 (top) and 73 (bottom) of a sequence
where shadows and other artifacts have been manually removed from the pedestrian
segmentation.

strategy with the aim of improving their robustness in such cases is a
natural direction for future research. Proposed algorithms have been
also analyzed in real sequences, in the context of hand an pedes-
trian tracking. Their performance under the presence of correlated
and uncorrelated clutter has corroborated the tendency observed in
synthetic experiments.
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