|
Joan Serrat, Ferran Diego, Felipe Lumbreras, Jose Manuel Alvarez, Antonio Lopez and C. Elvira. 2008. Dynamic Comparison of Headlights. Journal of Automobile Engineering, 222(5), 643–656.
Keywords: video alignment
|
|
|
Fadi Dornaika and Angel Sappa. 2009. Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression. PRL, 30(5), 535–543.
Abstract: This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.
|
|
|
David Geronimo, Angel Sappa, Daniel Ponsa and Antonio Lopez. 2010. 2D-3D based on-board pedestrian detection system. CVIU, 114(5), 583–595.
Abstract: During the next decade, on-board pedestrian detection systems will play a key role in the challenge of increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios, implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching for aspect-changing objects in cluttered environments. This makes such systems combine techniques in the state-of-the-art Computer Vision. In this paper we present a three module system based on both 2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the classified ROIs and with the 2D in order to refine the final results. According to the results, the integration of the proposed techniques gives rise to a promising system.
Keywords: Pedestrian detection; Advanced Driver Assistance Systems; Horizon line; Haar wavelets; Edge orientation histograms
|
|
|
Fernando Barrera, Felipe Lumbreras and Angel Sappa. 2012. Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation. J-STSP, 6(5), 437–446.
Abstract: This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.
|
|
|
Jiaolong Xu, David Vazquez, Antonio Lopez, Javier Marin and Daniel Ponsa. 2014. Learning a Part-based Pedestrian Detector in Virtual World. TITS, 15(5), 2121–2131.
Abstract: Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.
Keywords: Domain Adaptation; Pedestrian Detection; Virtual Worlds
|
|
|
Aura Hernandez-Sabate, Jose Elias Yauri, Pau Folch, Miquel Angel Piera and Debora Gil. 2022. Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals. APPLSCI, 12(5), 2298.
Abstract: The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
|
|
|
Fadi Dornaika and Angel Sappa. 2008. Evaluation of an Appearance-based 3D Face Tracker using Dense 3D Data.
|
|
|
Ferran Diego, Joan Serrat and Antonio Lopez. 2013. Joint spatio-temporal alignment of sequences. TMM, 15(6), 1377–1387.
Abstract: Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.
Keywords: video alignment
|
|
|
Alejandro Gonzalez Alzate and 6 others. 2016. Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison. SENS, 16(6), 820.
Abstract: Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset.
Keywords: Pedestrian Detection; FIR
|
|
|
Angel Sappa, P. Carvajal, Cristhian A. Aguilera-Carrasco, Miguel Oliveira, Dennis Romero and Boris X. Vintimilla. 2016. Wavelet based visible and infrared image fusion: a comparative study. SENS, 16(6), 1–15.
Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).
Keywords: Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
|
|