|
Lluis Pere de las Heras, Oriol Ramos Terrades, Sergi Robles and Gemma Sanchez. 2015. CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool. IJDAR, 18(1), 15–30.
Abstract: Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.
|
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, Muhammad Anwer Rao, Andrew Bagdanov, Michael Felsberg and Jorma. 2018. Scale coding bag of deep features for human attribute and action recognition. MVAP, 29(1), 55–71.
Abstract: Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.
Keywords: Action recognition; Attribute recognition; Bag of deep features
|
|
|
A.F. Sole, Antonio Lopez and G. Sapiro. 2001. Crease Enhancement Diffusion. Computer Vision and Image Understanding, 84(2): 241–248 (IF: 1.298).
|
|
|
A. Restrepo, Angel Sappa and M. Devy. 2005. Edge registration versus triangular mesh registration, a comparative study.
|
|
|
Jaume Amores and Petia Radeva. 2005. Retrieval of IVUS Images Using Contextual Information and Elastic Matching.
|
|
|
Angel Sappa. 2006. Unsupervised Contour Closure Algorithm for Range Image Edge-Based Segmentation.
|
|
|
Jaume Amores. 2013. Multiple Instance Classification: review, taxonomy and comparative study. AI, 201, 81–105.
Abstract: Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problemhave been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e.,leaving out other learning tasks such as regression). In order to perform our study, we implemented
fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL
methods.
Keywords: Multi-instance learning; Codebook; Bag-of-Words
|
|
|
Angel Sappa. 2006. Splitting up Panoramic Range Images into Compact 2½D Representations.
|
|
|
Angel Sappa and M.A. Garcia. 2007. Generating compact representations of static scenes by means of 3D object hierarchies.
|
|
|
Angel Sappa and M.A. Garcia. 2007. Coarse-to-Fine Approximation of Range Images with Bounded Error Adaptive Triangular Meshes.
|
|