|
Joan Serrat, Ferran Diego, Felipe Lumbreras, Jose Manuel Alvarez, Antonio Lopez and C. Elvira. 2008. Dynamic Comparison of Headlights. Journal of Automobile Engineering, 222(5), 643–656.
Keywords: video alignment
|
|
|
Arnau Ramisa, Alex Goldhoorn, David Aldavert, Ricardo Toledo and Ramon Lopez de Mantaras. 2011. Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas. JIRC, 64(3-4), 625–649.
Abstract: Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.
|
|
|
Jose Carlos Rubio, Joan Serrat, Antonio Lopez and Daniel Ponsa. 2012. Multiple target tracking for intelligent headlights control. TITS, 13(2), 594–605.
Abstract: Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.
Keywords: Intelligent Headlights
|
|
|
David Geronimo, Angel Sappa, Daniel Ponsa and Antonio Lopez. 2010. 2D-3D based on-board pedestrian detection system. CVIU, 114(5), 583–595.
Abstract: During the next decade, on-board pedestrian detection systems will play a key role in the challenge of increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios, implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching for aspect-changing objects in cluttered environments. This makes such systems combine techniques in the state-of-the-art Computer Vision. In this paper we present a three module system based on both 2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the classified ROIs and with the 2D in order to refine the final results. According to the results, the integration of the proposed techniques gives rise to a promising system.
Keywords: Pedestrian detection; Advanced Driver Assistance Systems; Horizon line; Haar wavelets; Edge orientation histograms
|
|
|
Gabriel Villalonga, Joost Van de Weijer and Antonio Lopez. 2020. Recognizing new classes with synthetic data in the loop: application to traffic sign recognition. SENS, 20(3), 583.
Abstract: On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2015. Efficient segmentation-free keyword spotting in historical document collections. PR, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|
|
Fadi Dornaika and Angel Sappa. 2009. Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression. PRL, 30(5), 535–543.
Abstract: This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol and Francesc J. Ferri. 2018. Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction. JMIV, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
M. Olivera, Angel Sappa and Victor Santos. 2015. A probabilistic approach for color correction in image mosaicking applications. TIP, 14(2), 508–523.
Abstract: Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures.
Keywords: Color correction; image mosaicking; color transfer; color palette mapping functions
|
|
|
Angel Sappa, Fadi Dornaika, Daniel Ponsa, David Geronimo and Antonio Lopez. 2008. An Efficient Approach to Onboard Stereo Vision System Pose Estimation. TITS, 9(3), 476–490.
Abstract: This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.
Keywords: Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system
|
|