|
Angel Sappa. 2006. Splitting up Panoramic Range Images into Compact 2½D Representations.
|
|
|
Angel Sappa and Boris Vintimilla. 2007. Cost-Based Closed Contour Representations.
|
|
|
Angel Sappa and 6 others. 2016. Monocular visual odometry: A cross-spectral image fusion based approach. RAS, 85, 26–36.
Abstract: This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
Keywords: Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion
|
|
|
Angel Sappa, David Geronimo, Fadi Dornaika and Antonio Lopez. 2006. On-board camera extrinsic parameter estimation. EL, 42(13), 745–746.
Abstract: An efficient technique for real-time estimation of camera extrinsic parameters is presented. It is intended to be used on on-board vision systems for driving assistance applications. The proposed technique is based on the use of a commercial stereo vision system that does not need any visual feature extraction.
|
|
|
Angel Sappa, Fadi Dornaika, Daniel Ponsa, David Geronimo and Antonio Lopez. 2008. An Efficient Approach to Onboard Stereo Vision System Pose Estimation. TITS, 9(3), 476–490.
Abstract: This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.
Keywords: Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system
|
|
|
Angel Sappa and M.A. Garcia. 2007. Generating compact representations of static scenes by means of 3D object hierarchies.
|
|
|
Angel Sappa and M.A. Garcia. 2007. Coarse-to-Fine Approximation of Range Images with Bounded Error Adaptive Triangular Meshes.
|
|
|
Angel Sappa and M.A. Garcia. 2007. Incremental Integration of Multiresolution Range Images.
|
|
|
Angel Sappa, P. Carvajal, Cristhian A. Aguilera-Carrasco, Miguel Oliveira, Dennis Romero and Boris Vintimilla. 2016. Wavelet based visible and infrared image fusion: a comparative study. SENS, 16(6), 1–15.
Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).
Keywords: Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
|
|
|
Antonio Lopez, Ernest Valveny and Juan J. Villanueva. 2005. Real-time quality control of surgical material packaging by artificial vision. Assembly Automation, 25(3).
|
|