|
Jiaolong Xu, David Vazquez, Antonio Lopez, Javier Marin and Daniel Ponsa. 2014. Learning a Part-based Pedestrian Detector in Virtual World. TITS, 15(5), 2121–2131.
Abstract: Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.
Keywords: Domain Adaptation; Pedestrian Detection; Virtual Worlds
|
|
|
Javier Marin, David Vazquez, Antonio Lopez, Jaume Amores and Ludmila I. Kuncheva. 2014. Occlusion handling via random subspace classifiers for human detection. TSMCB, 44(3), 342–354.
Abstract: This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes
Keywords: Pedestriand Detection; occlusion handling
|
|
|
Jaume Amores and Petia Radeva. 2005. Registration and Retrieval of Highly Elastic Bodies using Contextual Information. PRL, 26(11), 1720–1731.
|
|
|
Jaume Amores and Petia Radeva. 2005. Retrieval of IVUS Images Using Contextual Information and Elastic Matching.
|
|
|
Jaume Amores, N. Sebe and Petia Radeva. 2006. Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier. PRL, 27(3), 201–209.
|
|
|
Jaume Amores, N. Sebe and Petia Radeva. 2007. Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms.
|
|
|
Jaume Amores. 2013. Multiple Instance Classification: review, taxonomy and comparative study. AI, 201, 81–105.
Abstract: Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problemhave been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e.,leaving out other learning tasks such as regression). In order to perform our study, we implemented
fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL
methods.
Keywords: Multi-instance learning; Codebook; Bag-of-Words
|
|
|
Jaume Amores. 2015. MILDE: multiple instance learning by discriminative embedding. KAIS, 42(2), 381–407.
Abstract: While the objective of the standard supervised learning problem is to classify feature vectors, in the multiple instance learning problem, the objective is to classify bags, where each bag contains multiple feature vectors. This represents a generalization of the standard problem, and this generalization becomes necessary in many real applications such as drug activity prediction, content-based image retrieval, and others. While the existing paradigms are based on learning the discriminant information either at the instance level or at the bag level, we propose to incorporate both levels of information. This is done by defining a discriminative embedding of the original space based on the responses of cluster-adapted instance classifiers. Results clearly show the advantage of the proposed method over the state of the art, where we tested the performance through a variety of well-known databases that come from real problems, and we also included an analysis of the performance using synthetically generated data.
Keywords: Multi-instance learning; Codebook; Bag of words
|
|
|
J.S. Cope, P.Remagnino, S.Mannan, Katerine Diaz, Francesc J. Ferri and P.Wilkin. 2013. Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm. EXWA, 40(17), 6707–6712.
Abstract: Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves.
Keywords: Neural gas; Expert vision; Eye-tracking; Fixations
|
|
|
J. Pladellorens, M.J. Yzuel, J. Castell and Joan Serrat. 1993. Calculo automatico del volumen del ventriculo izquierdo. Comparacion con expertos..
|
|