|
Ernest Valveny, & Enric Marti. (1999). "Application of deformable template matching to symbol recognition in hand-written architectural draw " In Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|
|
Ernest Valveny, & Enric Marti. (1999)." Recognition of lineal symbols in hand-written drawings using deformable template matching" In Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes.
|
|
|
Gemma Sanchez, Josep Llados, & Enric Marti. (1997). "A string-based method to recognize symbols and structural textures in architectural plans " In 2nd IAPR Workshop on Graphics Recognition.
Abstract: This paper deals with the recognition of symbols and struc- tural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clus- tering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the simila- rity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes In Intelligent Robots: Sensing, Modeling and Planning (pp. 164–179). World Scientific Press.
Abstract: Dagstuhl Workshop
|
|
|
Josep Llados, & Enric Marti. (1997)." Playing with error-tolerant subgraph isomorphism in line drawings" In VII National Symposium on Pattern Recognition and image Analysis.
|
|
|
Gemma Sanchez, Josep Llados, & Enric Marti. (1997). Segmentation and analysis of linial texture in plans In Intelligence Artificielle et Complexité.. Paris.
Abstract: The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.
Keywords: Structural Texture, Voronoi, Hierarchical Clustering, String Matching.
|
|
|
Ernest Valveny, & Enric Marti. (1997)." Dimensions analysis in hand-drawn architectural drawings" In VII National Simposium of Pattern Recognition and image Analysis, SNRFAI´97 (pp. 90–91). CVC-UAB.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996)." Using cyclic string matching to find rotational and reflectional symmetric shapes" In H. B. H. N. R.C. Bolles (Ed.), Dagstuhl Seminar on Modelling and Planning for Sensor–based Intelligent Robot Systems. Saarbrucken (Germany).: World Scientific.
|
|
|
Josep Llados, Horst Bunke, & Enric Marti. (1996). "Structural Recognition of hand drawn floor plans " In VI National Symposium on Pattern Recognition and Image Analysis. Cordoba.
Abstract: A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.
Keywords: Rotational Symmetry; Reflectional Symmetry; String Matching.
|
|
|
Josep Llados, Jaime Lopez-Krahe, & Enric Marti. (1996). "Hand drawn document understanding using the straight line Hough transform and graph matching " In Proceedings of the 13th International Pattern Recognition Conference (ICPR’96) (Vol. 2, pp. 497–501). Vienna , Austria.
Abstract: This paper presents a system to understand hand drawn architectural drawings in a CAD environment. The procedure is to identify in a floor plan the building elements, stored in a library of patterns, and their spatial relationships. The vectorized input document and the patterns to recognize are represented by attributed graphs. To recognize the patterns as such, we apply a structural approach based on subgraph isomorphism techniques. In spite of their value, graph matching techniques do not recognize adequately those building elements characterized by hatching patterns, i.e. walls. Here we focus on the recognition of hatching patterns and develop a straight line Hough transform based method in order to detect the regions filled in with parallel straight fines. This allows not only to recognize filling patterns, but it actually reduces the computational load associated with the subgraph isomorphism computation. The result is that the document can be redrawn by editing all the patterns recognized
|
|