|
Jaume Garcia, David Rotger, Francesc Carreras, R.Leta, & Petia Radeva. (2003). "Contrast echography segmentation and tracking by trained deformable models " In Proc. Computers in Cardiology (Vol. 30, pp. 173–176). Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater.
Abstract: The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.
|
|
|
Jaume Garcia, Albert Andaluz, Debora Gil, & Francesc Carreras. (2010). "Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images " In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4805–4808).
Abstract: Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.
|
|
|
M. Gomez, J. Mauri, Eduard Fernandez-Nofrerias, Oriol Rodriguez-Leor, Carme Julia, Debora Gil, et al. (2002)." Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria" In XXXVIII Congreso Nacional de la Sociedad Española de Cardiología..
|
|
|
Debora Gil, Jaume Garcia, Ruth Aris, Guillaume Houzeaux, & Manuel Vazquez. (2009). "A Riemmanian approach to cardiac fiber architecture modelling " In R. L. R. V. L. Nithiarasu (Ed.), 1st International Conference on Mathematical & Computational Biomedical Engineering (pp. 59–62). Swansea (UK).
Abstract: There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts.
Keywords: cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry.
|
|
|
Debora Gil, Jaume Garcia, Manuel Vazquez, Ruth Aris, & Guillaume Houzeaux. (2008). "Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function " In 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008). Venezia (Italia).
Abstract: Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Keywords: Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.
|
|
|
Debora Gil, Jaume Garcia, Aura Hernandez-Sabate, & Enric Marti. (2010). "Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy " In 8th Medical Imaging (Vol. 7623, 304). SPIE.
Abstract: Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In ESC Congress. ,Sweden (EU).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In 3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart (pp. 65–74).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, Mireia Burnat, Steven Jansen, & Jordi Martinez-Vilalta. (2009). "Structure-Preserving Smoothing of Biomedical Images " In 13th International Conference on Computer Analysis of Images and Patterns (Vol. 5702, pp. 427–434). Springer Berlin Heidelberg.
Abstract: Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.
Keywords: non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.
|
|
|
Debora Gil, Oriol Rodriguez, J. Mauri, & Petia Radeva. (2006)." Statistical descriptors of the Myocardial perfusion in angiographic images" In Proc. Computers in Cardiology (pp. 677–680).
Abstract: Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol.
Keywords: Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification.
|
|