|
Josep Llados, Horst Bunke, & Enric Marti. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes In Intelligent Robots: Sensing, Modeling and Planning (pp. 164–179). World Scientific Press.
Abstract: Dagstuhl Workshop
|
|
|
Petia Radeva, & Enric Marti. (1995). Facial Features Segmentation by Model-Based Snakes In International Conference on Computing Analysis and Image Processing. Bellaterra (Barcelona), Spain.
Abstract: Deformable models have recently been accepted as a standard technique to segment different features in facial images. Despite they give a good approximation of the salient features in a facial image, the resulting shapes of the segmentation process seem somewhat artificial with respect to the natural feature shapes. In this paper we show that active contour models (in particular, rubber snakes) give more close and natural representation of the detected feature shape. Besides, using snakes for facial segmentation frees us from the problem of determination of the numerous weigths of deformable models. Another advantage of rubber snakes is their reduced computational cost. Our experiments using rubber snakes for segmentation of facial snapshots have shown a significant improvement compared to deformable models.
|
|
|
Debora Gil, Petia Radeva, Jordi Saludes, & Josefina Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach " In International Conference on Pattern Recognition (Vol. 4, pp. 352–355).
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Andrew Nolan, Daniel Serrano, Aura Hernandez-Sabate, Daniel Ponsa, & Antonio Lopez. (2013). "Obstacle mapping module for quadrotors on outdoor Search and Rescue operations " In International Micro Air Vehicle Conference and Flight Competition.
Abstract: Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
Keywords: UAV
|
|
|
Debora Gil, Aura Hernandez-Sabate, David Castells, & Jordi Carrabina. (2017). "CYBERH: Cyber-Physical Systems in Health for Personalized Assistance " In International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
Abstract: Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis.
|
|
|
A. M. Here, B. C. Lopez, Debora Gil, J. J. Camarero, & Jordi Martinez-Vilalta. (2013). "A new software to analyse wood anatomical features in conifer species " In International Symposium on Wood Structure in Plant Biology and Ecology.
Abstract: International Symposium on Wood Structure in Plant Biology and Ecology
|
|
|
Debora Gil, Antonio Esteban Lansaque, Sebastian Stefaniga, Mihail Gaianu, & Carles Sanchez. (2019). "Data Augmentation from Sketch " In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (Vol. 11840, pp. 155–162).
Abstract: State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.
We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
Keywords: Data augmentation; cycleGANs; Multi-objective optimization
|
|
|
Albert Andaluz, Francesc Carreras, Cristina Santa Marta, & Debora Gil. (2012). "Myocardial torsion estimation with Tagged-MRI in the OsiriX platform " In Wiro Niessen(Erasmus MC) and Marc Modat(UCL) (Ed.), ISBI Workshop on Open Source Medical Image Analysis software. IEEE.
Abstract: Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). "A medial map capturing the essential geometry of organs " In ISBI Workshop on Open Source Medical Image Analysis software (1691 - 1694). IEEE.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume
Keywords: Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction
|
|
|
Joan Serrat, & Enric Marti. (1991)." Elastic matching using interpolation splines" In IV Spanish Symposium of Pattern Recognition and image Analysis.
|
|