|
Jaume Garcia, Debora Gil, A.Bajo, M.J.Ledesma-Carbayo, & C.SantaMarta. (2008). "Influence of the temporal resolution on the quantification of displacement fields in cardiac magnetic resonance tagged images " In Alan Murray (Ed.), Proc. Computers in Cardiology (Vol. 35, pp. 785–788).
Abstract: It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possible. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.
|
|
|
Jaume Garcia, Debora Gil, Joel Barajas, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2006). "Characterization of ventricular torsion in healthy subjects using Gabor filters and a variational framework " In Proc. Computers in Cardiology (pp. 877–880).
Abstract: In this work, we present a fully automated method for tissue deformation estimation in tagged magnetic resonance images (TMRI). Gabor filter banks, tuned independently for each left ventricle level, provide optimally filtered complex images which phase remains constant along the cardiac cycle. This fact can be thought as the brightness constancy condition required by classical optical flow (OF) methods. Pairs of these filtered sequences, together with a variational formulation are used in a second step to obtain dense continuous deformation maps that we call Harmonic Phase Flow. This method has been used to determine reference values of ventricular torsion (VT) in a set of 8 healthy volunteers. The results encourage the use of VT as a useful parameter for ventricular function assessment in clinical routine.
|
|
|
Jaume Garcia, David Rotger, Francesc Carreras, R.Leta, & Petia Radeva. (2003). "Contrast echography segmentation and tracking by trained deformable models " In Proc. Computers in Cardiology (Vol. 30, pp. 173–176). Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater.
Abstract: The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.
|
|
|
Debora Gil, Oriol Rodriguez, J. Mauri, & Petia Radeva. (2006)." Statistical descriptors of the Myocardial perfusion in angiographic images" In Proc. Computers in Cardiology (pp. 677–680).
Abstract: Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol.
Keywords: Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification.
|
|
|
Aura Hernandez-Sabate, Debora Gil, Petia Radeva, & E.N.Nofrerias. (2004). "Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images " In Proc. Computers in Cardiology (Vol. 31, pp. 229–232). Chicago (USA).
Abstract: The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles
|
|
|
Jaume Garcia, Francesc Carreras, Sandra Pujades, & Debora Gil. (2008). "Regional motion patterns for the Left Ventricle function assessment " In Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 (pp. 1–4).
Abstract: Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases
|
|
|
Ernest Valveny, & Enric Marti. (2000). "Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework " In Proc. 15th Int Pattern Recognition Conf (Vol. 2, pp. 239–242).
Abstract: Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.
|
|
|
Enric Marti, Jordi Regincos, & Jaime Lopez-Krahe. (1991)." Interpretación de Dibujos Lineales a Mano Alzada Representando Escenas Tridimensionales" In Primer Congreso Español de Informática..
|
|
|
F. Javier Sanchez, Jordi Vitria, & Enric Marti. (1991)." Transformaciones Morfológicas de Polígonos Isotéticos" In Primer Congreso Español de Informática Gráfica..
|
|
|
Esmitt Ramirez, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2018). "Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy " In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis (Vol. 11041).
Abstract: Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.
Keywords: Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification
|
|