|
Petia Radeva, & Enric Marti. (1995). "An improved model of snakes for model-based segmentation " In Proceedings of Computer Analysis of Images and Patterns (pp. 515–520).
Abstract: The main advantage of segmentation by snakes consists in its ability to incorporate smoothness constraints on the detected shapes that can occur. Likewise, we propose to model snakes with other properties that reflect the information provided about the object of interest in a different extent. We consider different kinds of snakes, those searching for contours with a certain direction, those preserving an object’s model, those seeking for symmetry, those expanding open, etc. The availability of such a collection of snakes allows not only the more complete use of the knowledge about the segmented object, but also to solve some problems of the existing snakes. Our experiments on segmentation of facial features justify the usefulness of snakes with different properties.
|
|
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto, & Sergio S. Furuie. (2011). "Inferring the Performance of Medical Imaging Algorithms " In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano, & Walter Kropatsch (Eds.), 14th International Conference on Computer Analysis of Images and Patterns (Vol. 6854, pp. 520–528). L. Berlin: Springer-Verlag Berlin Heidelberg.
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
|
|
|
Joel Barajas, Jaume Garcia, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "Angle Images Using Gabor Filters in Cardiac Tagged MRI " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 107–114). Amsterdam, The Netherlands: IOS Press.
Abstract: Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.
Keywords: Angle Images, Gabor Filters, Harp, Tagged Mri
|
|
|
Jorge Bernal, Debora Gil, Carles Sanchez, & F. Javier Sanchez. (2014). "Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis " In 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy (Vol. 8899, pp. 1–10). Springer International Publishing.
Abstract: In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.
Keywords: Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2015). "A Novel Cochlear Reference Frame Based On The Laplace Equation " In 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery (Vol. 10, pp. 1–312).
|
|
|
Debora Gil, & Guillermo Torres. (2020). "A multi-shape loss function with adaptive class balancing for the segmentation of lung structures " In 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery.
|
|
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules" In 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery.
|
|
|
C. Santa-Marta, Jaume Garcia, A. Bajo, J.J. Vaquero, M. Ledesma-Carbayo, & Debora Gil. (2008)." Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images" In S. A. Roberto hornero (Ed.), XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica (352–353).
Abstract: It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "An inference model for analyzing termination conditions of Evolutionary Algorithms " In 14th Congrès Català en Intel·ligencia Artificial (pp. 216–225).
Abstract: In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
Keywords: Evolutionary Computation Convergence, Termination Conditions, Statistical Inference
|
|
|
Jose Elias Yauri, Aura Hernandez-Sabate, Pau Folch, & Debora Gil. (2021). "Mental Workload Detection Based on EEG Analysis " In Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. (Vol. 339, pp. 268–277).
Abstract: The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural Networks.
|
|