|
Jaume Garcia. (2002)." Propagacio de fronts per a la segmentacio en imatges IVUS" .
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, M. Gomez, Antonio Tovar, L. Cano, et al. (2002)." Ecografia Intracoronaria: Segmentacio Automatica de area de la llum" . Revista Societat Catalana de Cardiologia, 4(4), 42.
|
|
|
M. Gomez, J. Mauri, Eduard Fernandez-Nofrerias, Oriol Rodriguez-Leor, Carme Julia, Debora Gil, et al. (2002)." Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria" In XXXVIII Congreso Nacional de la Sociedad Española de Cardiología..
|
|
|
Debora Gil. (2002)." Regularized Curvature Flow" . Computer Vision Centre.
|
|
|
Debora Gil, Petia Radeva, & J. Mauri. (2002). "Ivus Segmentation Via a Regularized Curvature Flow " In X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 (pp. 133–136). Saragossa, Espanya.
Abstract: Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature.
|
|
|
Josep Llados, Ernest Valveny, Gemma Sanchez, & Enric Marti. (2002). "Symbol recognition: current advances and perspectives " In Dorothea Blostein and Young- Bin Kwon (Ed.), Graphics Recognition Algorithms And Applications (Vol. 2390, pp. 104–128). Lecture Notes in Computer Science. Springer-Verlag.
Abstract: The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, M. Gomez, Antonio Tovar, L. Cano, et al. (2002)." Ecografia Intracoronària: Segmentació Automàtica de area de la llum" In XXXVIII Congreso Nacional de la Sociedad Española de Cardiología..
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich, & Enric Marti. (2002)." Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching" In Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 (502–507).
|
|
|
Jaume Garcia, David Rotger, Francesc Carreras, R.Leta, & Petia Radeva. (2003). "Contrast echography segmentation and tracking by trained deformable models " In Proc. Computers in Cardiology (Vol. 30, pp. 173–176). Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater.
Abstract: The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.
|
|
|
Debora Gil, & Petia Radeva. (2003)." Curvature based Distance Maps" . Computer Vision Center.
|
|