|
H. Martin Kjer, Jens Fagertun, Sergio Vera, & Debora Gil. (2017). "Medial structure generation for registration of anatomical structures " In Skeletonization, Theory, Methods and Applications (Vol. 11).
|
|
|
Josep Llados, Jaime Lopez-Krahe, & Enric Marti. (1997). "A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform " In Machine Vision and Applications (Vol. 10, pp. 150–158).
Abstract: Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.
Keywords: Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition
|
|
|
Carles Sanchez, Jorge Bernal, F. Javier Sanchez, Antoni Rosell, Marta Diez-Ferrer, & Debora Gil. (2015). "Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy " . International Journal of Computer Assisted Radiology and Surgery, 10(6), 935–945.
|
|
|
Carles Sanchez, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2015)." Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy" In 6th International Conference on Information Processing in Computer-Assisted Interventions IPCAI2015 (Vol. 10, pp. 935–945).
Abstract: PURPOSE:
Lack of objective measurement of tracheal obstruction degree has a negative impact on the chosen treatment prone to lead to unnecessary repeated explorations and other scanners. Accurate computation of tracheal stenosis in videobronchoscopy would constitute a breakthrough for this noninvasive technique and a reduction in operation cost for the public health service.
METHODS:
Stenosis calculation is based on the comparison of the region delimited by the lumen in an obstructed frame and the region delimited by the first visible ring in a healthy frame. We propose a parametric strategy for the extraction of lumen and tracheal ring regions based on models of their geometry and appearance that guide a deformable model. To ensure a systematic applicability, we present a statistical framework to choose optimal parametric values and a strategy to choose the frames that minimize the impact of scope optical distortion.
RESULTS:
Our method has been tested in 40 cases covering different stenosed tracheas. Experiments report a non- clinically relevant [Formula: see text] of discrepancy in the calculated stenotic area and a computational time allowing online implementation in the operating room.
CONCLUSIONS:
Our methodology allows reliable measurements of airway narrowing in the operating room. To fully assess its clinical impact, a prospective clinical trial should be done.
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2015). "A Novel Cochlear Reference Frame Based On The Laplace Equation " In 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery (Vol. 10, pp. 1–312).
|
|
|
Miquel Angel Piera, Jose Luis Muñoz, Debora Gil, Gonzalo Martin, & Jordi Manzano. (2022). "A Socio-Technical Simulation Model for the Design of the Future Single Pilot Cockpit: An Opportunity to Improve Pilot Performance " . IEEE Access, 10, 22330–22343.
Abstract: The future deployment of single pilot operations must be supported by new cockpit computer services. Such services require an adaptive context-aware integration of technical functionalities with the concurrent tasks that a pilot must deal with. Advanced artificial intelligence supporting services and improved communication capabilities are the key enabling technologies that will render future cockpits more integrated with the present digitalized air traffic management system. However, an issue in the integration of such technologies is the lack of socio-technical analysis in the design of these teaming mechanisms. A key factor in determining how and when a service support should be provided is the dynamic evolution of pilot workload. This paper investigates how the socio-technical model-based systems engineering approach paves the way for the design of a digital assistant framework by formalizing this workload. The model was validated in an Airbus A-320 cockpit simulator, and the results confirmed the degraded pilot behavioral model and the performance impact according to different contextual flight deck information. This study contributes to practical knowledge for designing human-machine task-sharing systems.
Keywords: Human factors ; Performance evaluation ; Simulation; Sociotechnical systems ; System performance
|
|
|
Debora Gil, Aura Hernandez-Sabate, Julien Enconniere, Saryani Asmayawati, Pau Folch, Juan Borrego-Carazo, et al. (2022). "E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights " . IEEE Access, 10, 7489–7503.
Abstract: More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
|
|
|
David Castells, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles Sanchez, Debora Gil, et al. (2022). "A Survey of FPGA-Based Vision Systems for Autonomous Cars " . IEEE Access, 10, 132525–132563.
Abstract: On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.
Keywords: Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures
|
|
|
Sonia Baeza, Debora Gil, I.Garcia Olive, M.Salcedo, J.Deportos, Carles Sanchez, et al. (2022). "A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients " . EJNMMI Physics, 9(1, Article 84), 1–17.
Abstract: Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
|
|
|
Josep Llados, & Enric Marti. (1999)." A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems" . Machine Graphics & Vision, 8, 195–211.
|
|