toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Fei Yang; Yongmei Cheng; Joost Van de Weijer; Mikhail Mozerov edit  url
doi  openurl
  Title (up) Improved Discrete Optical Flow Estimation With Triple Image Matching Cost Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 17093 - 17102  
  Keywords  
  Abstract Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YCW2020 Serial 3345  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit   pdf
doi  openurl
  Title (up) Improved Recursive Geodesic Distance Computation for Edge Preserving Filter Type Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 26 Issue 8 Pages 3696 - 3706  
  Keywords Geodesic distance filter; color image filtering; image enhancement  
  Abstract All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ISE; 600.120; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ Moz2017 Serial 2921  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz; Chengpeng Chen edit   pdf
url  doi
openurl 
  Title (up) Learning Effective RGB-D Representations for Scene Recognition Type Journal Article
  Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 28 Issue 2 Pages 980-993  
  Keywords  
  Abstract Deep convolutional networks can achieve impressive results on RGB scene recognition thanks to large data sets such as places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a two-step training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGB-D model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5 m to 5.5 m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can be addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video data set to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks that are trained in three steps with increasingly complex data to learn effective features (i.e., patches, frames, and sequences). Our approach obtains the state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ SJH2019 Serial 3247  
Permanent link to this record
 

 
Author Svebor Karaman; Giuseppe Lisanti; Andrew Bagdanov; Alberto del Bimbo edit   pdf
doi  openurl
  Title (up) Leveraging local neighborhood topology for large scale person re-identification Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 12 Pages 3767–3778  
  Keywords Re-identification; Conditional random field; Semi-supervised; ETHZ; CAVIAR; 3DPeS; CMV100  
  Abstract In this paper we describe a semi-supervised approach to person re-identification that combines discriminative models of person identity with a Conditional Random Field (CRF) to exploit the local manifold approximation induced by the nearest neighbor graph in feature space. The linear discriminative models learned on few gallery images provides coarse separation of probe images into identities, while a graph topology defined by distances between all person images in feature space leverages local support for label propagation in the CRF. We evaluate our approach using multiple scenarios on several publicly available datasets, where the number of identities varies from 28 to 191 and the number of images ranges between 1003 and 36 171. We demonstrate that the discriminative model and the CRF are complementary and that the combination of both leads to significant improvement over state-of-the-art approaches. We further demonstrate how the performance of our approach improves with increasing test data and also with increasing amounts of additional unlabeled data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 601.240; 600.079 Approved no  
  Call Number Admin @ si @ KLB2014a Serial 2522  
Permanent link to this record
 

 
Author Lorenzo Seidenari; Giuseppe Serra; Andrew Bagdanov; Alberto del Bimbo edit   pdf
doi  openurl
  Title (up) Local pyramidal descriptors for image recognition Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 5 Pages 1033 - 1040  
  Keywords Object categorization; local features; kernel methods  
  Abstract In this paper we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution
pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one’s bets on which levels will most relevant for matching during learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and show that its use in four state-of-the-art image recognition pipelines improves accuracy and yields state-of-the-art results. Our technique is applicable independently of spatial pyramid matching and we show that spatial pyramids can be combined with local pyramids to obtain
further improvement.We achieve state-of-the-art results on Caltech-101
(80.1%) and Caltech-256 (52.6%) when compared to other approaches based on SIFT features over intensity images. Our technique is efficient and is extremely easy to integrate into image recognition pipelines.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079 Approved no  
  Call Number Admin @ si @ SSB2014 Serial 2524  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: